
Optimal Ascent/Reentry/Landing Trajectory Scheme 

for an Atmospheric Measuring UAV* 
 

Jeffrey A. Mays 

Department of Mechanical and Aerospace Engineering 

Naval Postgraduate School 

1 University Circle, Monterey, CA 93943, USA 

mays.jeff20@gmail.com 
 

 Abstract – The selected problem for this paper focuses on the 

optimal ascent/reentry/landing trajectory for a 6 degree-of-

freedom vertically integrated vertical take-off and landing 

unmanned aerial vehicle. The vehicle’s purpose is to optimally 

enter an upper atmospheric corridor at a predefined desired state 

for applications spanning from atmospheric measurement 

sweeping, surveillance, mapping, defense, etc. The primary use-

case noted in this paper will be to measure the atmosphere with a 

suite of sensors by simply flying through the corridor of interest. 

Once the atmospheric corridor has been successfully flown 

through, the vehicle must optimally guide itself back to the landing 

pad, where it will softly land, allowing fast-paced reusability of the 

system. This paper will define the system, break up the full 

trajectory into individual optimal control problems, solve the 

problems while also checking for feasibility/optimality, and 

conclude with the resulting set of trajectory solutions that meets 

the requirements outlined in the paper. 
 

 Index Terms – UAV, Trajectory Optimization, Ascent, Reentry, 

Landing. 

 

I.  INTRODUCTION 

 For many decades, radiosondes have been a widely used 

tool for scientists, researchers, engineers, and even hobbyists to 

measure characteristics of the atmosphere. These radiosondes 

are battery-powered telemetry recording devices with a suite of 

sensors that are passed through the atmosphere, typically by a 

weather balloon. They measure altitude, pressure, temperature, 

humidity, and wind velocity and are typically tracked as they 

ascend. In most cases, measurements during ascent are 

telemetered to a ground station, but can also be stored onboard 

for recovery by a recovery crew. Once the radiosonde reaches 

a certain altitude, due to various atmospheric conditions, the 

weather balloon either pops or loses pressure, causing the 

radiosonde to begin its descent back to the Earth. Radiosondes 

are very powerful tools, not only because they are able to 

measure the atmosphere (as compared to a theoretical 

mathematical model) but they are also usually inexpensive and 

cheap. However, there are some downsides to radiosondes that 

make them not the most optimal tool to measure the 

atmosphere. 

 Radiosondes are open-loop systems, and are characterized 

by the environment they are released in. Normally, a radiosonde 

is released on the ground while attached to a helium filled 

weather balloon. While simple, the weather balloon will ascend 

 
* This work is in support of the 299 Applied Trajectory Optimization Certificate as required for the AE/ME4881 Trajectory Planning & Guidance course. 

at a rate relative to its buoyancy, meaning radiosondes can be 

slow to ascend, and their rates and lateral displacement can vary 

widely throughout flight. Furthermore, a radiosonde will only 

measure the atmosphere the system itself passes through. In 

many cases, scientists and researchers desire an atmospheric 

measurement that fits within a linear set of nodes or a 

predefined space, but this is not an achievable measurement 

from a radiosonde. Over the course of its flight, it may laterally 

travel 50+ miles before reaching the desired altitude. Because 

of this lack of control, typically it is common to interpolate the 

radiosonde measurements with those of weather models to help 

quantify error bounds [1], which is not optimal in data 

assimilation. 

 As previously noted, radiosondes’ ascent can vary. 

Typically, their ascent rates are between 250-350 meters per 

minute. At face value, this might seem relatively fast. However, 

when attempting to measure a large sweep of an atmosphere 

spanning thousands of meters (tens of miles), it can take a 

significantly long time to measure, meaning an actively 

changing atmosphere may change state by the time the 

radiosonde flies through the point of interest, assuming it is 

even able to achieve that. 

 Furthermore, radiosondes, while cheap, are rarely 

recoverable and usually fly so far away (tens of miles) from the 

release point that telemetered signals can be lost, and onboard 

equipment unreturned. This leads to pollution of plastics, 

electronics, and rubber materials, with the radiosonde and its 

balloon ending up anywhere the wind may have taken it. The 

radiosonde itself is also descending from its respective apogee, 

which could land in a populated area. 

 It is possible for aerial drones to complete a similar profile 

as a radiosonde, but with a controllability advantage. A drone 

can be controlled and theoretically told to fly a predetermined 

ascending profile through a region. The drones could even fly 

through specific node points used in a weather forecast model 

to help validate the forecast and its current/future predictions. 

Furthermore, while an aerial drone is not as cheap as the 

radiosonde, a drone would be recoverable, meaning each 

radiosonde isn’t a blank wasted cost for a singular (slow and 

inaccurate) measurement of the atmosphere. 

There are already companies working on using drones to 

measure weather. A company called Meteomatics creates 

quadrotors used to regularly measure low to mid atmospheric 
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profiles [2]. Their business model centers around measuring the 

atmosphere wherever needed, and at a higher fidelity than most 

weather models. Another company, Area-I, created a fixed-

wing style drone to record atmospheric information in areas not 

easily accessible or unsafe. A recent use of one of the drones 

was sent into hurricane Ian to capture atmospheric data [3]. 

These two examples are just a few of the practical use cases for 

drones to carry out atmospheric monitoring that would give the 

user an advantage over a conventional radiosonde. Likewise, to 

the two examples, this paper will focus on developing a drone 

that will be able to achieve a similar result as the examples 

provided, but while also applicable to the course this paper is 

constructed within. 

Given the use case and examples of other companies that 

measure the atmosphere with drones, why is trajectory 

optimization required? An optimal trajectory is required in this 

project due to the flight envelope and vehicle design. Manually 

designing an ascent and reentry guidance trajectory under the 

necessary constraints by hand is highly infeasible, especially 

when nonlinear dynamics come into play. Optimization allows 

for aspects to be solved governed by the dynamics such as: what 

is the optimal angle to fly through the desired atmospheric 

region? How does the vehicle, after flying through said region, 

reorient itself above a launch-landing pad (LLP)? How will the 

vehicle nullify its dynamic rates prior to landing? How can the 

drone be sure to meet specific performance requirements, such 

as flight path angles or desired endpoint conditions? If all 

requirements are to be met, the only way to solve this problem 

is to have a well optimized trajectory that not only accomplishes 

the mission, but also is able to constrain the vehicle during 

various phases of the mission with the best chance for success. 

Without optimization, the problem would likely either be 

infeasible, or need to be drastically simplified. 

The purpose of this paper is to apply Trajectory 

Optimization to a practical and probable real-world application 

in support of the ME/AE4881 Trajectory Planning & Guidance 

course. The selected problem for this paper focuses on the 

development and guidance & control of a multi-phase optimal 

outer-loop guidance trajectory for a 6 degree of freedom (DOF) 

vertically integrated vertical take-off and landing (VTOL) 

unmanned aerial vehicle (UAV). For this paper, the vehicle’s 

purpose is to optimally enter a predefined upper atmospheric 

corridor for the purpose of atmospheric measurement sweeping. 

Once the atmospheric corridor has been successfully flown 

through, the vehicle must optimally guide itself back to the 

landing pad, where it will softly land. Since most other 

applications of this vehicle would minimally require optimally 

found ascent/reentry/landing trajectories, the specific 

application of this problem in this paper can be easily expanded 

to many other applications. This project will focus on the 

vehicle definition, dynamic modeling, inner/outer loop control 

architecture, and formal definitions and solutions to the 

proposed optimal ascent/reentry/landing trajectories. 

This project will be solved using a common engineering 

simulation and development software, MATLAB, as well as an 

optimal trajectory indirect solver named “DIDO.” DIDO, along 

with various mathematical models of the drone of interest, will 

be used to make an a priori trajectory that the drone’s inner loop 

controllers will be meant to track based on various control and 

state constraints defined by the trajectory designer. 

II.  SYSTEM OVERVIEW 

 This section describes a high-level overview of the system 

and attempts to identify and clarify to the reader how various 

aspects of the project will be solved. 
 

A. Vehicle Description 

 The vehicle in this project is a 6 DOF vertically integrated 

VTOL UAV and closely mimics a common “launch vehicle.” 

This vehicle does not yet exist, but theoretically could with 

specific drone related technologies. This paper is not meant to 

describe in detail the lower-level hardware of the drone, but 

rather enough context for the reader to sufficiently justify the 

choices made in the later developed optimal trajectories. 

 Fig. 1 illustrates the system along with its primary body 

axes: Center of Mass (COM), and Fabrication (FAB). These 

two frames are aligned with one another but are in different 

locations along their 𝑥-axes. The COM frame is centered at the 

center of mass, whereas the FAB frame is located aft of the 

vehicle. The 𝑋 axis is considered the roll axis, the 𝑌 axis is the 

pitching axis, and the 𝑍 axis is the yawing axis, respectively. 
 

 
 

Fig. 1 General vehicle overview 
 

 The engine onboard this vehicle is theoretical but could 

plausibly mimic an electric ducted fan (EDF). This type of 

engine could produce relative propulsive forces and torques that 

allows the vehicle to accomplish the mission. With the engine 

being electrically driven, no propellant mass is consumed, 

meaning the overall vehicle mass and center of mass are 

approximately constant throughout flight. Furthermore, the 

thrust vector produced by this vehicle can be vectored from an 
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attached gimbal joint, similarly to how a traditional vertically 

integrated launch vehicles vector thrust. This forms the bases 

for one of the two major effectors that will allow the vehicle to 

accomplish the desired mission. 

 In the descent phase of flight, rather than using the engine 

to manipulate the trajectory, grid fins are deployed as the 

secondary effectors on this vehicle. These grid fins not only act 

as air brakes, which help reduce the descent rate of the vehicle, 

but also give the vehicle aerodynamic maneuverability during 

unpowered engine flight phases while the dynamic pressure is 

not appreciable. The deployed grid fins also act to help shift the 

aerodynamic center of the vehicle forward/aft of the center of 

mass, depending on the incoming freestream air. This is an 

important aspect in ensuring the system remains 

aerodynamically stable under different flight envelopes. 

 Table I lists out a general overview of physical 

characteristics for this hypothetical vehicle. Note that all the 

following parameters are not necessarily applicable to the later 

developed trajectories. 
 

TABLE I 

VEHICLE PARAMETERS 

Parameter Rep. Value Unit 

Mass 𝑚 2 kg 

Total Length 𝑙𝑟𝑒𝑓 1.5 m 

Diameter 𝑑𝑟𝑒𝑓 0.1 m 

Ixx (roll) Inertia 𝐼𝑥𝑥
𝑐  0.01 kg-m^2 

Iyy (pitch) Inertia 𝐼𝑦𝑦
𝑐  0.15 kg-m^2 

Izz (yaw) Inertia 𝐼𝑧𝑧
𝑐  0.15 kg-m^2 

Eng. Moment Arm 𝒓𝑐𝑒
𝑐  [0.75 0 0]𝑇 m 

Grid Fin Moment Arm 𝒓𝑐𝑔
𝑐  [0.75 0 0]𝑇 m 

Engine Max Thrust 𝑇𝑚𝑎𝑥 39.24 N 

Engine Min Control Thrust 𝑇𝑚𝑖𝑛,𝑐 5 N 

Engine Min OFF Thrust 𝑇𝑚𝑖𝑛,𝑜𝑓𝑓 0 N 

Gimbal Max Tilt Angle 𝛿𝑒 6 deg 

Roll fractional 𝛿𝑟𝑓 -0.025 -- 
 

B.  Ascent Trajectory Overview 

 The ascent phase of this UAV can be broken up into four 

sub-trajectories: Liftoff, Ascent, Corridor, and Coast. Fig. 2 

illustrates these four trajectories, also referred to as segments. 

Note that these segments will be described in greater detail later 

in the paper as optimal control problems. 

 The Liftoff segment is an initial segment to allow the 

system to achieve some non-zero airspeed prior to commanding 

transient behavior. During this time, the guidance and control 

architecture is attempting to maintain a perfectly vertical vector 

that is normal to the center of the LLP. This segment is 

hardcoded to end at a set time of 1 second. Given the system 

properties, the Liftoff trajectory will end at ~5 𝑚  above the 

ground while traveling ~10 𝑚/𝑠 vertically. 

 The Ascent trajectory is an a priori guidance trajectory that 

is optimized to guide the vehicle, based on the dynamics of the 

system, from the end of the Liftoff trajectory to the beginning 

of the Corridor trajectory. Based on the desired Corridor 

entrance criteria defined by the user, this optimal trajectory will 

manipulate the vehicle’s state and engine control vector such 

that all criteria are met. 

 The Corridor trajectory is a vertically oriented linear 

trajectory meant to span a segment of atmosphere. The corridor 

has a particular set of path requirements that are defined via the 

spanned altitude. The Ascent trajectory is expected to feed the 

Corridor segment with the desired position and velocity vector. 

Once in the Corridor segment, guidance & control will attempt 

to stay within a desired region during the vehicle’s ascent, 

eventually ending with a vehicle exit of the pre-defined 

corridor. 

 The Coast trajectory is the last phase of ascent. Its purpose 

is to simply allow the vehicle to reach its ballistic apogee. No 

control effectors are used in this segment. The Coast trajectory 

ends at apogee where vertical velocity is zero. 

 

 
 

Fig. 2 Ascent trajectory overview 

  

C.  Descent Trajectory Overview 

 The descent phase of this UAV can be broken up into three 

trajectories: Reentry, Landing, and T=W. Fig. 3 illustrates these 

three segments. 

The Reentry trajectory is first trajectory that contains a 

negative vertical velocity with respect to (w.r.t.) the UEN 
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frame. Its sole purpose is to reorient the vehicle above the LLP 

for handoff to the Landing trajectory. It accomplishes this by 

deploying the four forward section grid fins and using them to 

produce aerodynamic forces that augment the outcome of the 

vehicle dynamics such that the trajectory’s endpoint constraints 

are met. The extension of the grid fins at the of the vehicle act 

as both aerodynamically stabilizing wings (pull the 

aerodynamic center aft of the center of mass w.r.t. the 

freestream) and as control effectors to allow the vehicle to have 

full 6DOF control during Reentry. During this trajectory, the 

engine is disabled and not used. 

 The Landing segment is the segment that looks to nullify 

the vertical and lateral dynamics and allow the vehicle to enter 

the final segment at a pre-defined state. During this trajectory, 

the engine is reenabled and grid fin control is disabled. 

However, the grid fins are still deployed to aid in the slowing 

down of the vehicle. This segment also has a defined glide slope 

constraint, which forces the vehicle to remain in a conical space 

prior during the entire trajectory. The apex of the cone coincides 

with the start of the final segment explained in the next 

paragraph. 

 The T=W, or thrust equals weight, segment is the final 

segment of descent. It is a predefined segment meant to provide 

additional margin for the full integrated system prior to 

touchdown. The desire is for the vehicle to land perfectly 

vertical without any lateral velocity and a “slow” vertical 

velocity such that the landing gear will not exceed their 

structural tolerances at touchdown. The T=W trajectory should 

aid in the reliability of this occurring. 

 

D.  System Architecture Overview 

 Based on the prior sections, there needs to be a system in 

place to make the true vehicle applicable to fly the developed 

outer loop trajectories. Fig. 4 pictorially illustrates the system 

overview, spanning from how the user interacts with the 

vehicle, to how the avionics and physical vehicle interacts with 

the real world. Note that 𝑿 corresponds to the true system state, 

𝑿̂ are the estimated sensor states based on the true state, and 𝜹 

are low-level actuator control commands. 

 Using the Integrated Ground System (IGS), the user can 

manipulate the vehicle while powered on. At power up, the 

system is in an idle state and sitting on the LLP, where the 

vehicle is passively waiting for commands. The user is then able 

to upload a guidance trajectory to the vehicle’s internal 

memory, accessible from the vehicle’s Main Flight Computer 

(MFC). This uploaded guidance trajectory is created from an 

optimization routine (either before or on launch day) that 

considers constraints and desired performance of the vehicle set 

by the user. Once this trajectory is uploaded to the vehicle, the 

user can designate when the launch should occur. 

 The launch occurs through a user command to the vehicle’s 

MFC Sequencer software capability (SWC). The SWC aids not 

only in sequencing for a launch attempt, but also in helping the 

vehicle know which phase of flight it is in such that it can 

enable/disable other SWC. The sequencer is actively used while 

the vehicle is powered on, and aids in operation from prior to 

liftoff to post touchdown. 

 Once launched, the guidance and control SWC within the 

 
 

Fig. 3 Descent trajectory overview 

 

  

 
 

Fig. 4 System architecture overview 
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MFC reads both the desired optimal trajectory as well as the 

Estimator / Navigator SWC, which is derived from sensed 

states driven by the vehicle’s true state. The guidance and 

control act as outer and inner cascaded control loops which 

augment the actuators to cause the vehicle to follow the desired 

state planned out by the uploaded trajectory. Ultimately, the 

inner loop sends commands to the actuator local-loop 

controllers, which are then sent to the actual actuators on the 

vehicle. The guidance and control architectures are comprised 

of proportional-derivative controllers and are gain scheduled 

depending on the phase of flight. 

 The plant is the true system, and this contains the plant 

actuators, sensor models, and 6DOF dynamics of the vehicle. 

The only interaction between the MFC and the true system 

(plant) is the commands sent to the actuators, and the sensed 

sensor states from the true sensors. By augmenting the actuators 

via the prior cascaded control loops, the dynamics are 

manipulated and thus cause a difference in the system’s 

propagation through time, in turn changing the required 

guidance and control signals. This architecture mimics a classic 

control loop used to manifest a dynamical system to a desired 

setpoint. 

 It should be noted that while the real system would have 

sensors paired with an optimal estimator, this project’s focus is 

not concerned with the estimation of the vehicle states (as 

depicted in the Estimator / Navigator block) but rather the 

trajectory optimization and outer loop guidance of the system. 

Therefore, for the present study, all sensed information required 

by the guidance and flight control systems is assumed to be 

perfectly known. No sensor dynamics, deterministic errors or 

noises are modelled, although the full vehicle integrated 

simulation would contain provisions for their inclusion. 

III.  DYNAMIC MODELING 

 This section details the dynamics and subsystem models 

that will be used to characterize an optimal trajectory for the 

specified mission. First the optimization equations of motion 

will be discussed. Then, the equations that characterize the 

aerodynamics, engine, and grid fins will be presented. 
 

A.  Optimization Dynamics 

In many modern applications of generating optimal control 

trajectories, it is common practice to take higher order “high-

fidelity” (HiFi) modeled dynamics and break them down into a 

simplified “low-fidelity” (LoFi) model. This renders an easier 

and computationally cheaper solution while still retaining 

enough fidelity to mimic the HiFi system within the respective 

flight envelop. This is especially crucial when the optimal 

control problem is to be solved in real time, in which case likely 

drastic measures are taken to simplify the system (double 

integrator assumption, flattened dynamics, ignored 

aerodynamics, etc.). For this project, the optimization routine is 

performed a priori, and therefore does not have any explicit 

requirements limiting its fidelity from a solution time 

perspective. However, simplifications will still be made to 

render a tangible solution without overcomplicating the 

problem. The intent of this optimal trajectory solution is to 

provide the inner loop control systems with a trackable setpoint, 

rendering explicit attitude and inner loop control commands 

redundant. Furthermore, higher order dynamics, such as 

Coriolis and centripetal effects [4], can be safely ignored for 

this project due to the later defined flight envelop. These 

elements could be added in the future should they ever produce 

non-negligible accelerations. 

For completeness, before developing any equations or 

discussing trajectory problems, Table II describes some useful 

nomenclature for the reader. 
 

TABLE II 

NOMENCLATURE 

Variable Description 

𝒙 A bold variable denotes a vector 

𝑥 A non-bold variable denotes a scalar 

ECEF, 𝑒 Earth-Centered Earth-Fixed 

UEN, 𝑢 Up-East-North 

COM, 𝑐 Center of Mass 

𝒙0 Initial vector 

𝒙𝑓 Final vector 

𝒓𝑎𝑏
𝑐  Position vector from 𝑎 to 𝑏 expressed in frame 

𝑐 . 𝒓𝑢𝑐
𝑢  would mean a position vector in 

cartesian coordinates from the UEN to the 
COM, expressed in UEN. 

𝒗𝑎𝑏
𝑐  Velocity vector from 𝑎  to 𝑏  expressed in 

frame 𝑐. 

𝒗𝑓,𝑎𝑏
𝑐  Final state velocity vector from 𝑎  to 𝑏 

expressed in frame 𝑐. 

𝑟𝑓,𝑦
𝑢  Final east position in the UEN frame 

𝒙 
𝑎  A vector that comes from source “𝑎” 

 

 As previously stated, the attitude and explicit control 

trajectories for the inner loop systems are not required for this 

system. Therefore, rather than a full 6DOF set of dynamical 

equations that govern the motion of the vehicle though its 

outlined mission, the problem can be reduced to positional 

3DOF, where the vehicle itself is considered a point mass. 

Assuming we can operate in a quasi-inertial Up-East-North 

(UEN) frame, acceleration of the vehicle then follows Newton’s 

second law. 

 

𝒂𝑒𝑐
𝑢 =

𝑭𝑢

𝑚
+ 𝒈𝑢 (1) 

 

𝒂𝑒𝑐
𝑢  is the acceleration of COM in the Earth-Centered Earth-

Fixed (ECEF) frame expressed in the UEN frame, 𝑚 is a scalar 

mass, 𝑭𝑢  are all inertial forces expressed in the UEN frame 

applied to the COM, and 𝒈𝑢 is the gravitational acceleration of 

the Earth. Note that this gravitational attraction does not include 

centripetal effects from the Earth’s rotation, and therefore only 

contains one non-zero component, 𝑔𝑥
𝑢. The inertial forces in the 

UEN frame, 𝑭𝑢 , come from multiple sources and will be 

described in the next sections. The change in position can be 

described by 
 

𝒓̇𝑢𝑐
𝑢 = 𝒗𝑒𝑐

𝑢 − 𝒗𝑒𝑢
𝑢 (2) 

 

Since the UEN frame is not moving with respect to the rigid 

Earth, 𝒗𝑒𝑢
𝑢  is assumed zero. The above equations then fully 

characterize the position, velocity, and acceleration of the 
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vehicle as described for a point mass. The full state vector is 

then the following. 
 

𝒙 = [𝒗𝑒𝑐
𝑢 𝒓𝑢𝑐

𝑢 ]𝑇 

 

These above set of equations are very simple but could be easily 

expanded into a higher order set of equations by the inclusion 

of a rotating Earth assumption. However, for the purposes of 

this project, the above set of dynamics should be more than 

sufficient to render an applicable optimal trajectory for the 

system. 

 For the remainder of this paper, the velocity and position 

states will mostly be referred to as 𝒓𝑢  or 𝒗𝑢  to represent the 

position or velocity of the COM in the UEN frame. It may also 

be referred to in its full form as described in Table II. Should 

any additional super or subscripts be used, they will likely refer 

to an initial time, such as 𝒓0
𝑢 , or a final time, such as 𝒗𝑓

𝑢 . 

Furthermore, elements of the cartesian state may be directly 

referred to by their element order of (𝑥, 𝑦, 𝑧), in which case 

there will be additional subscripts to denote the element within 

the vector. For example, 𝑣𝑓,𝑧  will be assumed to refer to the 

final COM velocity in the UEN frame, specifically in the North 

direction since 𝑧 is the 3rd element of the UEN resolved vector. 
 

B.  Aerodynamics 

 Aerodynamics are an integral part of any aerial vehicle that 

must fly through an atmospheric fluid. In many optimal 

trajectory applications where aerodynamics persists, it is 

common to simplify the problem down such that the 

aerodynamics are of lower order, or even ignored. In this 

project, the aerodynamics will be empirically derived from [5], 

with the purpose of simply producing a plausible aerodynamic 

drag force, discussed more later. Should this system ever one 

day exist, then additional effort can be made to update the 

model used in this project to depict the system more accurately 

for the true system. 

Based on [5], the aerodynamic tables in Fig. 5 can be 

derived, where 𝐶𝑋 , 𝐶𝑌 , and 𝐶𝑍  represent aerodynamic 

coefficients in FAB frame components, with 𝐶𝑋  representing 

axial drag. Some heuristic work was performed to ensure these 

values produced feasible aerodynamic forces. A sinusoid was 

also used to continuously fill gaps between various points of 

estimation. Aerodynamics are interpolated based on a set of 

aerodynamic angles along with whether the grid fins are 

“stowed” or “deployed.” 

 
 

Fig. 5 System architecture overview 
  

 As previously discussed, the optimization dynamics are 

3DOF in position, and therefore do no possess the ability to 

apply aerodynamic angles into the system of equations due to a 

lack of an attitude state at any given time. Assuming the vehicle 

never encounters a significant angle of attack for a long period 

of time, and the nose of the craft, whether it be the nosecone on 

ascent or the engine exit plane on descent, will always be facing 

into the freestream vector, lateral body frame aerodynamic 

forces can be considered zero. Therefore, an aerodynamic angle 

of zero degrees will be assumed throughout the entirety of the 

trajectory to drive out the axial aerodynamic force coefficient, 

𝐶𝑋 . The only point that 𝐶𝑋  will change value is during the 

transition from ascent, where the grid fins will be “stowed,” to 

descent, where the grid fins will be “deployed.” When 

deployed, the axial drag is increased. Since the aerodynamic 

drag is a scalar based on total velocity in the UEN frame, its 

application to the vehicle will be directly opposing to the global 

UEN velocity vector’s direction.   

 The force of drag in the UEN frame can be described by 
 

𝑭 
𝑢

 
𝑎 =

[𝑣𝑥 𝑣𝑦 𝑣𝑧]𝑇

√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2
∗ 𝑞̅𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋 (3) 

 

where 𝑞̅  is the dynamic pressure, and 𝐿𝑟𝑒𝑓  and 𝐷𝑟𝑒𝑓  are the 

reference length and diameter, which are equivalent to the 

length and diameter of the vehicle. Expanding, we get 
 

𝑭 
𝑢

 
𝑎 =

[𝑣𝑥 𝑣𝑦 𝑣𝑧]𝑇 ∗ [
1
2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)]

√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

(4) 

 

and then simplifying like terms and separating into their own 

vector components, we get 
 

𝐹𝑥
𝑢

 
𝑎 = 𝑣𝑥

 [
1

2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋√𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2] (5) 

 

𝐹𝑦
𝑢

 
𝑎 = 𝑣𝑦

 [
1

2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋√𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2] (6) 

 

𝐹𝑧
𝑢

 
𝑎 = 𝑣𝑧

 [
1

2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋√𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2] (7) 

 

Since the 𝐶𝑋 drag coefficient is negative, the above forces will 

oppose the velocity vector of the vehicle. This completes the 

equations that define the aerodynamic forces that act on the 

vehicle for the optimization dynamics. 

 

C.  Engine & TVC 

 The engine and thrust vector gimbals are both located near 

the aft portion of the vehicle and are the main source of forces 

and torques on the vehicle. This theoretical system can produce 

all axes forces and torques on the system while also not 

contributing to total mass rate changes to the full vehicle. Fig. 

6 describes the sea level thrust lookup table of the engine. 

 Fig. 6 is used to set the min and max bounds on the thrust 

control vector path constraint. No dynamical effects of the 

engine or atmospheric loss is modeled for simplicity. However, 

this model can be easily expanded with transient dynamics and 

performance losses of the engine based on the environment in 

future iterations of this work. This simplicity is acceptable for 

the optimization dynamics. Fig. 7 illustrates the engine and 

gimbal system. 
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Fig. 6 Engine thrust performance 

 

 

 
 

Fig. 7 Engine and gimbal design 

 

 For the true system, the engine and gimbal model accept a 

thrust command, 𝑇, and gimbal attitude commands to provide 

all axis forces and torques on the vehicle. These commands 

would be separated out and be heavily coupled with the inner 

loop controllers of the system. However, for the optimization 

dynamics of this system, a significant amount of simplification 

can be made. 

 Because the optimization dynamics are 3DOF, body 

moments are no longer relevant. As such, no understanding of 

attitude can be made either. Therefore, rather than engine and 

gimbal control commands, the engine model in these 

optimization dynamics will be resolved to a thrust vector in the 

UEN frame, with thrust magnitude, tilt, and heading used to 

characterize the total force vector. This is a drastic 

simplification but should still be applicable to the full system 

for the purposes of generating an outer loop optimal trajectory. 

It can be assumed that whatever constraints posed to the tilt and 

heading control states, manifest equivalently as similar 

constraints on the steady state attitude and direction vectors of 

the true system. The path constraint limit on tilt is more difficult 

to quantify in this methodology, but it can be assumed through 

stability, non-linear monte-carlo analysis, and iteration within 

simulations and analysis that the bounds would be defined 

sufficiently small that the full nonlinear system would still be 

able to track the desired trajectory path. Fig. 8 illustrates the 

control vector for the engine and gimbal within the UEN frame. 

 

 
 

Fig. 8 Thrust, tilt, and heading defined vector 

 

 With the engine thrust vector defined via the thrust 

magnitude, tilt, and heading with respect to the UEN frame, the 

following equations describe the subsystem’s forces. 
 

𝐹𝑥
𝑢

 
𝑒 = 𝑇 cos𝜑 (8) 

 
𝐹𝑦
𝑢

 
𝑒 = 𝑇 sin𝜑 sin𝛽 (9) 

 
𝐹𝑧
𝑢

 
𝑒 = 𝑇 sin𝜑 cos𝛽 (10) 

 

For this project, it is assumed that a maximum tilt angle of 25 

degrees is appropriate for the system of interest. This completes 

the equations that define the engine and gimbal forces that act 

on the vehicle for the optimization dynamics. 

 

D.  Grid Fins 

 The grid fins are located near the nose of the vehicle and 

are nominally in a stowed configuration. It is not until the 

vehicle starts its descent from apogee that the grid fins are 

deployed. This design choice is to ensure the aerodynamic 

center is translated aft of the center of mass with respect to the 

freestream air during the change in direction. This is a mostly 

passive stabilization system that allows the vehicle to remain 

upright (zero tilt in the UEN frame) with its engine facing 

downward during descent. Secondarily, the grid fins act as drag 

brakes that decrease the descent rate due to a large step change 

increase in drag. 

 However, the grid fins on this vehicle are not completely 

passive, as they are allowed to rotate amongst themselves 

independently. This is primarily to allow for inner-loop control 

to make corrections to the descent trajectory, which will be 

plagued by unmodeled winds and other modeling 

simplifications. For the optimization dynamics, similarly to 

how the engine and gimbal were simplified, the grid fin 

effectors are also drastically simplified. Since the additional 

axial drag is already modeled within the aerodynamic axial 

force coefficient, the grid fins can be assumed to only influence 

the lateral UEN dynamics of the system (east and north). 

Furthermore, since the grid fins are an aerodynamic effector, 

their force components are a function of the dynamic pressure 

experienced at the vehicle. If we assume one control state of the 

system is resolved in the East-West plane, and another is 
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resolved in the North-South plane, then the grid fin forces in the 

UEN frame can be described by  
 

𝑭 
𝑢

 
𝑔 = [0 1 1]𝑇 ∗ 𝑞̅𝑆𝑟𝑒𝑓

𝑔 [0 𝛿𝐸 𝛿𝑁] (11) 

 

where 𝑞̅ is the dynamic pressure, 𝑆𝑟𝑒𝑓
𝑔

 is the reference area of 

the grid fins, and [𝛿𝐸 𝛿𝑁] is the control effect of the system 

that can accelerate the vehicle in the lateral direction. Note that 

𝑆𝑟𝑒𝑓
𝑔

 could be empirically tuned to restrict the setpoint 

command of the full fidelity grid fins in HiFi simulation. 

Breaking up the above equation into their respective UEN 

components yields 
 

𝐹𝑥
𝑢

 
𝑔 = 0 (12) 

 

𝐹𝑦
𝑢

 
𝑔 =

1

2
𝜌(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)𝑆𝑟𝑒𝑓
𝑔
𝛿𝐸 (13) 

 

𝐹𝑧
𝑢

 
𝑔 =

1

2
𝜌(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)𝑆𝑟𝑒𝑓
𝑔
𝛿𝑁 (14) 

 

This completes the equations that define the grid fin forces that 

act on the vehicle for the optimization dynamics. Note that these 

effectors are only enabled during the Reentry trajectory and are 

latched to zero in all other phases of flight. 

 

E.  Dynamic Modeling Conclusion 

 The above sections describe the 3DOF dynamics, 

aerodynamics, engine, and grid fin models as they are 

applicable to developing a set of optimal trajectories. These 

models will be combined and used to optimize trajectories with 

the previously described mission objective. The following is a 

conclusion of the system state and control vectors used for this 

project. Note that the full trajectory described in this project is 

separated into multiple phases, with each phase having different 

characteristics set by the trajectory designer. Those parameters 

are left out of the state or control vector seen by the numerical 

optimizer since they are scheduled based on the trajectory phase 

and mission timeline but will be described in more detail later. 
 

𝒙 = [𝒗𝑢𝑐
𝑢 𝒓𝑢𝑐

𝑢 ]𝑇 (15) 
 

𝒖 = [𝑇 𝜑 𝛽 𝛿𝐸 𝛿𝑁]
𝑇 (16) 

 

𝒑 = [𝜌 𝐶𝑋 𝐿𝑟𝑒𝑓 𝐷𝑟𝑒𝑓 𝑆𝑟𝑒𝑓
𝑔

𝒈𝑢]
𝑇

(17) 

 

The complete equations of motion in the UEN frame, as they 

are broken up into their subcomponents, are presented below. 
 

𝑣̇𝑥
𝑢 =

𝐹𝑥
𝑢 + 𝐹𝑥

𝑢
 
𝑒

 
𝑎

𝑚
+𝑔𝑥

𝑢 (18) 

 

𝑣̇𝑦
𝑢 =

𝐹𝑦
𝑢 + 𝐹𝑦

𝑢
 
𝑒 + 𝐹𝑦

𝑢
 
𝑔

 
𝑎

𝑚
(19) 

 

𝑣̇𝑧
𝑢 =

𝐹𝑧
𝑢 + 𝐹𝑧

𝑢
 
𝑒 + 𝐹𝑧

𝑢
 
𝑔

 
𝑎

𝑚
(20) 

 
𝑟̇𝑥
𝑢 = 𝑣𝑥

𝑢 (21) 
 

𝑟̇𝑦
𝑢 = 𝑣𝑦

𝑢 (22) 
 

𝑟̇𝑧
𝑢 = 𝑣𝑧

𝑢 (23) 

When developing an optimal control problem, it is common 

for the optimal control designer to scale the equations of motion 

such that the numerical solvers are more easily able derive a 

solution; some problem sets cannot be solved without this step. 

For the dynamics previously discussed, the states and control 

parameters were chosen such that they were all similarly sized 

and not too egregious from one another, which led to future 

optimal control problem statements that do not require 

scaling/balancing to be performed. Therefore, scaling in this 

project can be assumed to be either not performed, or simply 

scaled by unity. 

Now that the system models are described and the 

optimization dynamics completely formulated, attention can be 

turned to developing and solving the optimization problems of 

interest to develop the previously described trajectories.  

IV.  TRAJECTORY FORMULATION AND SOLUTION 

 This section illustrates and discusses the problem 

formulations and solutions for this project’s various trajectory 

phases. The trajectories discussed in this section are: 
 

• Liftoff 

• Ascent (optimized) 

• Corridor (optimized) 

• Coast 

• Reentry (optimized) 

• Landing (optimized) 

• T=W 
 

 Each of the previously discussed trajectory phases will be 

discussed as a sub-section. If the trajectory of interest is 

optimized, it will include the application of Pontryagin’s 

minimization principle, of which nomenclature and convention 

are heavily derived from [6]. It will also include feasibility 

checks and Verification & Validation (V&V) of the derived 

solution. The tool used to computationally solve the optimized 

problems for each trajectory phase is a computer program called 

“DIDO.” DIDO is a MATLAB based in-direct optimal control 

collocation solver in which these problem formulations will be 

implemented. Since the objective of this paper is not to answer 

how to setup these problems in software, information regarding 

how these problems were formulated in MATLAB is not 

included. 

 Note that some trajectories within the entire mission profile 

are not optimal, but rather acting simply as bridges from one 

state to the next. For organization and completeness purposes, 

those trajectories will still be discussed in this section, 

regardless of whether Pontryagin’s minimization principle is 

required. Note also that many equations will be derived, but 

then simply re-referenced later to prevent redundant repetitions 

of the same equation. 

 

A.  Liftoff Trajectory 

 The Liftoff trajectory is simply a flight phase that looks to 

move the vehicle off the LLP; it is not part of the solved optimal 

control trajectories. For this mission, it was decided that a one 

second perfectly vertical max thrust control input would 
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describe the Liftoff trajectory, which finishes at an above 

ground level altitude of ~5 m, traveling ~10 m/s upward. Fig. 9 

illustrates the Liftoff trajectory. 

 
 

Fig. 9 Liftoff 

 

B.  Ascent Trajectory 

 The Ascent trajectory is formatted as the following optimal 

control problem, Optimal Problem 1: Ascent. Note that its 

initial conditions are taken from the final Liftoff trajectory state. 

For simplicity, the optimization equations (Eqns. 18-23) will be 

referred to as  
 

𝒙̇ = 𝑓(𝒙, 𝒖, 𝒑) 
 

for the remainder of the document to simplify the reference. For 

the Ascent trajectory, Table III helps characterize the endpoint 

constraint on position. 

 This optimal control problem has a fully defined initial state 

vector based on the final state of the Liftoff trajectory, along 

with path constraints on all its control effectors. Furthermore, it 

has an endpoint constraint inequality stating it must fly though 

a circular of radius 𝑅𝑎  at the final altitude. This matches the 

corridor entrance as previous described. The optimal control 

problem is minimized via time. 

The above optimal control problem can be solved through 

the HAMVET method: Hamiltonian, Adjoint, Minimize, 

Value, Evaluation, and Transversality [6]. 

Ascent Hamiltonian 

The Hamiltonian is a combination of the running cost, the 

costate vector, and the dynamics, formulated as  
 

𝐻(𝝁, 𝝀, 𝒙, 𝒖, 𝑡) = 𝐹(𝒙, 𝒖) + 𝝀𝑇𝑓(𝒙, 𝒖) (24) 

Optimal Problem 1: Ascent 

Ascent 

 𝒙 ∈ ℝ6,    𝒖 ∈ ℝ5 

  

Min. 𝐽[𝒙(⋅), 𝒖(⋅), 𝑡𝑓] = 𝑡𝑓 

  
s.t. 𝒙̇ = 𝑓(𝒙, 𝒖, 𝒑) 

𝑡0 = 0 𝑠 
𝒗0
𝑢 = 𝒗𝑓,𝑙𝑖𝑓𝑡𝑜𝑓𝑓

𝑢  𝑚/𝑠 

𝒓0
𝑢 = 𝒓𝑓,𝑙𝑖𝑓𝑡𝑜𝑓𝑓

𝑢  𝑚 

(𝑣𝑓,𝑦
𝑢 , 𝑣𝑓,𝑧

𝑢 ) = (0, 0) 𝑚/𝑠 

𝑟𝑓,𝑥
𝑢 = 50 𝑚 

 

0 ≤ (𝑟𝑓,𝑦
𝑢 − 𝑎𝑎)

2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑎)
2
≤ 𝑅𝑎

2 

 

ℎ1(𝒖, 𝑡) ≔ 5 𝑁 ≤ 𝑇 ≤ 39.24 𝑁 

ℎ2(𝒖, 𝑡) ≔ 0 𝑑𝑒𝑔 ≤ 𝜑 ≤ 25 𝑑𝑒𝑔 

ℎ3(𝒖, 𝑡) ≔ 0 𝑑𝑒𝑔 ≤ 𝛽 ≤ 360 𝑑𝑒𝑔 

ℎ4(𝒖, 𝑡) ≔ 0 ≤ 𝛿𝐸 ≤ 0  
ℎ5(𝒖, 𝑡) ≔ 0 ≤ 𝛿𝑁 ≤ 0  
 

 

 

 
TABLE III 

PARAMETER DATA FOR THE OPTIMAL ASCENT CONTROL PROBLEM 

Parameter Value 

𝑎𝑎 10 𝑚 

𝑏𝑎 0 𝑚 

𝑅𝑎 2 𝑚 

𝑡0  0 𝑠 
𝐶𝑋 −0.1202 (stowed) 

 

For this assignment, path constraints exist, which require 

construction of the Lagrangian of the Hamiltonian for this 

optimization problem. The additional path constrains are 

included as part of an 𝒉  function. The Lagrangian of the 

Hamiltonian is then, 
 

𝐻̅(𝝁, 𝝀, 𝒙, 𝒖, 𝑡) = 𝐹(𝒙, 𝒖) + 𝝀𝑇𝑓(𝒙, 𝒖) + 𝝁𝑇𝒉(𝒙,𝒖) (25) 
 

where 𝐹(𝒙, 𝒖) is the Langrange (running) cost element of the 

cost function, 𝑓(𝒙, 𝒖) are the system dynamics, 𝝀𝑇 are a vector 

of co-vectors, and 𝝁𝑇𝒉(𝒙) is included from the Karush-Kuhn-

Tucker (KKT) complimentary criterion due to the path 

constraints. Constructing the Lagrangian of the Hamiltonian 

based on the previously defined optimal control problem 

definition, we get the following.  
 

𝐹(𝒙, 𝒖) = 0 (26) 
 

𝝀𝑇𝑓(𝒙, 𝒖, 𝒑) = 𝐴 + 𝐵 (27) 
 

𝝁𝑇𝒉(𝒖) = 𝜇𝑇𝑇 + 𝜇𝜑𝜑 + 𝜇𝛽𝛽 + 𝜇𝛿𝐸𝛿𝐸 + 𝜇𝛿𝑁𝛿𝑁 (28) 

 

The 𝐴 and 𝐵 components from Eqn. 27 are  

 

𝐴 = 𝜆𝑣𝑥 (
𝐹𝑥
𝑢 + 𝐹𝑥

𝑢
 
𝑒

 
𝑎

𝑚
+𝑔𝑥

𝑢) + 𝜆𝑣𝑦 (
𝐹𝑦
𝑢 + 𝐹𝑦

𝑢
 
𝑒 + 𝐹𝑦

𝑢
 
𝑔

 
𝑎

𝑚
)

+ 𝜆𝑣𝑧 (
𝐹𝑧
𝑢 + 𝐹𝑧

𝑢
 
𝑒 + 𝐹𝑧

𝑢
 
𝑔

 
𝑎

𝑚
) 

 

𝐵 = 𝜆𝑟𝑥𝑣𝑥 + 𝜆𝑟𝑦𝑣𝑦 + 𝜆𝑟𝑧𝑣𝑧 

 

This concludes the construction of our Hamiltonian and 

Lagrangian of the Hamiltonian. 
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Ascent Hamiltonian Minimization 

Performing the Hamiltonian Minimization Condition 

(HMC) involves a box-constrained minimization problem on 

the Hamiltonian. Taking the partial derivative of the Lagrangian 

of the Hamiltonian with respect to its control vectors and 

equating that partial derivative to 0 along with involving the 

stationery and complementarity conditions gives us the 

following. 
 

𝜕𝐻̅

𝜕𝑇
= 0 = 𝜆𝑣𝑥 (

cos𝜑

𝑚
) + 𝜆𝑣𝑦 (

sin𝜑 sin𝛽

𝑚
) + 𝜆𝑣𝑧 (

sin𝜑 cos𝛽

𝑚
) + 𝜇𝑇 

 

𝜕𝐻̅

𝜕𝜑
= 0 = 𝜆𝑣𝑥 (

−𝑇 sin𝜑

𝑚
) + 𝜆𝑣𝑦 (

𝑇 cos𝜑 sin 𝛽

𝑚
) + 𝜆𝑣𝑧 (

𝑇 cos𝜑 cos𝛽

𝑚
) + 𝜇𝜑 

 

𝜕𝐻̅

𝜕𝛽
= 0 = 𝜆𝑣𝑦 (

sin𝜑 cos𝛽

𝑚
) + 𝜆𝑣𝑧 (

− sin𝜑 sin𝛽

𝑚
) + 𝜇𝛽 

 

𝜕𝐻̅

𝜕𝛿𝐸
= 0 = 𝜆𝑣𝑦 (

1
2
𝜌(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)𝑆𝑟𝑒𝑓
𝑔𝑓𝑖𝑛

𝑚
)+ 𝜇𝛿𝐸 

 

𝜕𝐻̅

𝜕𝛿𝑁
= 0 = 𝜆𝑣𝑧 (

1
2
𝜌(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)𝑆𝑟𝑒𝑓
𝑔𝑓𝑖𝑛

𝑚
)+ 𝜇𝛿𝑁 

 

The above completes the stationary condition minimization. 

From the KKT complimentary criterion, we can also say 
 

𝜇𝑇 {

≤ 0 𝑖𝑓 𝑇 = 5 𝑁
= 0 𝑖𝑓 5𝑁 < 𝑇 < 39.24 𝑁
≥ 0 𝑖𝑓 𝑇 = 39.24 𝑁   

(29) 

 

𝜇𝜑 {

≤ 0 𝑖𝑓 𝜑 = 0 𝑑𝑒𝑔
= 0 𝑖𝑓 0 𝑑𝑒𝑔 < 𝜑 < 25 𝑑𝑒𝑔

≥ 0 𝑖𝑓 𝜑 = 25 𝑑𝑒𝑔   
(30) 

 

𝜇𝛽 {

≤ 0 𝑖𝑓 𝛽 = 0 𝑑𝑒𝑔
= 0 𝑖𝑓 0 𝑑𝑒𝑔 < 𝛽 < 360 𝑑𝑒𝑔

≥ 0 𝑖𝑓 𝛽 = 360 𝑑𝑒𝑔   
(31) 

 
𝜇𝛿𝐸{

 
𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑠𝑖𝑛𝑐𝑒 ℎ4

𝐿 = ℎ4
𝑈 (32) 

 
𝜇𝛿𝑁{

 
𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑠𝑖𝑛𝑐𝑒 ℎ5

𝐿 = ℎ5
𝑈  (33) 

 

where we do not know the specific value of the path co-vector, 

but we will know how it will react in the face of a path 

constraint on the control trajectory solution. 

 

Ascent Adjoint Equations 

The Adjoint equations are the equations that describe the 

time rate of change of the co-vectors as defined by the negative 

time rate of change of the Lagrangian of the Hamiltonian, or 

 
𝜕𝐻̅

𝜕𝒙
= −𝝀̇ (34) 

 

Taking the partial derivative of the Lagrangian of the 

Hamiltonian with respect to every element of the state vector, 

𝒙, we get 

𝜕𝐻̅

𝜕𝑣𝑥
= −𝜆̇𝑣𝑥 = 𝜆𝑣𝑥 (

[
1
2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋(2𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)]

𝑚√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

)

+ 𝜆𝑣𝑦 (
𝑣𝑦 [

1
2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋(2𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)]

𝑚√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

 

+  
𝜌𝑣𝑥𝑆𝑟𝑒𝑓

𝑔
𝛿𝐸

𝑚
)

+ 𝜆𝑣𝑧 (
𝑣𝑧 [

1
2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋(2𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)]

𝑚√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

 

+  
𝜌𝑣𝑥𝑆𝑟𝑒𝑓

𝑔
𝛿𝑁

𝑚
)+ 𝜆𝑟𝑥 

 

𝜕𝐻̅

𝜕𝑣𝑦
= −𝜆̇𝑣𝑦 = 𝜆𝑣𝑥 (

𝑣𝑥 [
1
2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋(𝑣𝑥

2 + 2𝑣𝑦
2 + 𝑣𝑧

2)]

𝑚√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

)  

+ 𝜆𝑣𝑦 (
[
1
2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋(𝑣𝑥

2 + 2𝑣𝑦
2 + 𝑣𝑧

2)]

𝑚√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

 

+ 
𝜌𝑣𝑦𝑆𝑟𝑒𝑓

𝑔
𝛿𝐸

𝑚
)   

+ 𝜆𝑣𝑧 (
𝑣𝑧 [

1
2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋(𝑣𝑥

2 + 2𝑣𝑦
2 + 𝑣𝑧

2)]

𝑚√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

+
𝜌𝑣𝑦𝑆𝑟𝑒𝑓

𝑔
𝛿𝑁

𝑚
)+ 𝜆𝑟𝑦 

 

𝜕𝐻̅

𝜕𝑣𝑧
= −𝜆̇𝑣𝑧 = 𝜆𝑣𝑥 (

𝑣𝑥 [
1
2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋(𝑣𝑥

2 + 𝑣𝑦
2 + 2𝑣𝑧

2)]

𝑚√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

)  

+ 𝜆𝑣𝑦 (
𝑣𝑦 [

1
2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋(𝑣𝑥

2 + 𝑣𝑦
2 + 2𝑣𝑧

2)]

𝑚√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

+
𝜌𝑣𝑧𝑆𝑟𝑒𝑓

𝑔
𝛿𝐸

𝑚
)   

+  𝜆𝑣𝑧(
[
1
2
𝜌𝐿𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐶𝑋(𝑣𝑥

2 + 𝑣𝑦
2 + 2𝑣𝑧

2)]

𝑚√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

+
𝜌𝑣𝑧𝑆𝑟𝑒𝑓

𝑔
𝛿𝑁

𝑚
)+ 𝜆𝑟𝑧 

 
𝜕𝐻̅

𝜕𝑟𝑥
= −𝜆̇𝑟𝑥 = 0 

 
𝜕𝐻̅

𝜕𝑟𝑦
= −𝜆̇𝑟𝑦 = 0 

 
𝜕𝐻̅

𝜕𝑟𝑧
= −𝜆̇𝑟𝑧 = 0 

 

The above provide the dynamics of the co-states as a function 

of time in between the Ascent trajectory endpoints. 
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Ascent Transversality Conditions 

The Endpoint Lagrangian is defined as 
 

𝐸̅(𝒙0, 𝒙𝑓 , 𝝂, 𝑡0, 𝑡𝑓) = 𝐸(𝒙0, 𝒙𝑓, 𝑡0, 𝑡𝑓) + 𝝂
𝑇𝒆(𝒙0, 𝒙𝑓 , 𝑡0, 𝑡𝑓) (35) 

 

where 𝐸(𝑡𝑓) is the endpoint cost, 𝝂 are the endpoint co-vectors, 

and 𝒆(𝑥𝑓) are the endpoint error equations. The endpoint error 

equations, which encompass both initial and terminal 

conditions, can be expressed as the following for the Ascent 

trajectory. Remember that the initial state vector is completely 

known, and the desire is to enter the Corridor trajectory within 

a predefined circular entrance at a particular altitude and at zero 

lateral velocity. 
 

𝒆(𝒙0, 𝒙𝑓) =

[
 
 
 
 
 
 
 

𝒗0
 − 𝒗0

𝒓0
 − 𝒓0

𝑣𝑓,𝑦
 − 𝑣 𝑦

𝑓

𝑣𝑓,𝑧
 − 𝑣𝑧

𝑓

𝑟𝑓,𝑥 − 𝑟𝑥
𝑓

(𝑟𝑓,𝑦
𝑢 − 𝑎𝑎)

2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑎)
2
]
 
 
 
 
 
 
 

⟹ 𝝂 ∈ ℝ10 

 

From the proposed optimal control problem, we know 𝐸(𝑡𝑓) =

𝑡𝑓, therefore our Endpoint Lagrangian becomes 
 

𝐸̅(𝒙0, 𝒙𝑓, 𝝂, 𝑡𝑓) = 𝑡𝑓 + [𝜈1 𝜈2 𝜈3]𝒗0
 
 
+ [𝜈4 𝜈5 𝜈6]𝒓0

 + 𝜈7(𝑣𝑓,𝑦
 − 𝑣 𝑦

𝑓
)

+ 𝜈8(𝑣𝑓,𝑧
 − 𝑣𝑧

𝑓
) + 𝜈9(𝑟𝑓,𝑥 − 𝑟𝑥

𝑓
)

+ 𝜈10 ((𝑟𝑓,𝑦
𝑢 − 𝑎𝑎)

2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑎)
2
) 

 

The above Endpoint Lagrangian can be used to find the terminal 

transversality conditions. 
 

𝝀(𝑡𝑓) =
𝜕𝐸̅

𝜕𝒙𝑓
(36) 

 

The Endpoint Lagrangian at all the initial conditions would be 

equivalent to their 𝝂 value since the equation is not a function 

of any other states that would not drop as part of the partial 

derivative, and therefore provide no new analytical information. 

The terminal transversality conditions however have some 

terms that do not cancel, and therefore can be expanded. 
 

𝜕𝐸̅

𝜕𝑣𝑓,𝑦 
= 𝝀𝑣𝑦(𝑡𝑓) = 𝜈7 

 

𝜕𝐸̅

𝜕𝑣𝑓,𝑧 
= 𝝀𝑣𝑧(𝑡𝑓) = 𝜈8 

 

𝜕𝐸̅

𝜕𝑟𝑓,𝑥 
= 𝝀𝑟𝑓,𝑥(𝑡𝑓) = 𝜈9 

 

𝜕𝐸̅

𝜕𝑟𝑓,𝑦 
= 𝝀𝑟𝑓,𝑦(𝑡𝑓) = 2𝜈10(𝑟𝑓,𝑦 − 𝑎) 

 

𝜕𝐸̅

𝜕𝑟𝑓,𝑧
= 𝝀𝑟𝑓,𝑧(𝑡𝑓) = 2𝜈10(𝑟𝑓,𝑧 − 𝑏) 

 

With the complementarity condition, we know that all the 𝝂 

above are unrestricted in value. However, 𝜈10  can be 

approximated due to the inequality on the final lateral position. 

𝜈10

{
 
 

 
 ≤ 0 𝑖𝑓 (𝑟𝑓,𝑦

𝑢 − 𝑎𝑎)
2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑎)
2
= 0

= 0 𝑖𝑓 0 < (𝑟𝑓,𝑦
𝑢 − 𝑎𝑎)

2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑎)
2
< 𝑅𝑎

2

≥ 0 𝑖𝑓 (𝑟𝑓,𝑦
𝑢 − 𝑎𝑎)

2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑎)
2
= 𝑅𝑎

2   

(37) 

 

Ascent Hamiltonian Value Conditions 

The Hamiltonian Value Condition (HVC) uses the endpoint 

Lagrangian and is given by 
 

ℋ[@𝑡𝑓] = −
𝜕𝐸̅

𝜕𝑡𝑓
(38) 

 

Taking the partial derivative of our endpoint Lagrangian with 

respect to time yields the following, which is expected given 

the optimal control problem is minimum time. 
 

ℋ[@𝑡𝑓] = −
𝜕𝐸̅

𝜕𝑡𝑓
= −1 (39) 

 

Ascent Hamiltonian Evolution Equation 

 The Hamiltonian Evolution Equation (HEE) helps describe 

the change to the Hamiltonian as a function of time. Taking the 

partial derivative of the Hamiltonian for this optimal control 

problem yields the following result due to the Hamiltonian not 

being an explicit function of time. 
 

𝑑ℋ

𝑑𝑡
=
𝜕𝐻

𝜕𝑡
= 0 (40) 

 

Ascent Trajectory Results 

 The Ascent trajectory from the ascent trajectory problem 

formulation was implemented in DIDO and solved for under 

the previously described initial, endpoint, and path constraints, 

leading to the following figure, which contains the solved 

position and velocity states of the vehicle. Note that this figure 

also contains a post-simulation (sim) fidelity check, which 

implements the control vector solved by DIDO into an open 

loop simulation that utilizes MATLAB’s ode45 propagator. 

This secondary fidelity simulation is performed to determine 

the feasibility of the provided control and state solution. Fig. 10 

illustrates the Ascent Trajectory’s solution. Furthermore, a plot 

of the control vector can be made as well, shown in Fig. 11. 

There are a few elements of note about the Ascent 

Trajectory’s solution that prove the solution matches what was 

desired by the original formulation: 

• The initial states are as defined in the optimal control 

problem, which are equivalently the final states of the 

Liftoff trajectory. The vehicle starts at a non-zero 

upward velocity of ~5 m/s while perfectly aligned with 

the vertical component of the UEN frame and at the 

specified position of ~10 meters above the ground. 

• To ensure minimum time, the thrust profile over the 

trajectory is, for most of the time, at full throttle. It 

reaches the desired endpoint conditions at 𝑡 = 2.41 𝑠 
after the end of the Liftoff Trajectory. 

• The vehicle then translates laterally over the given 

altitude during its ascent and ultimately finishes the 

trajectory within the predefined circular corridor 

entrance while also at the desired zero lateral velocity. 

The final position at the specified final altitude is 
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approximately 𝒓𝑢𝑐
𝑢 = [50 8 0]𝑇 𝑚 , which is 

within/at the circular endpoint constraint. 

• The vertical velocity vector starts to slow at the end of 

the Ascent trajectory, indicating that aerodynamic 

drag is starting to become more significant due to the 

increase in dynamic pressure in relation to a constant 

engine thrust. 

• The control vector elements never exceed their control 

vector path constraints. 

• The feasibility simulation closely mimics the provided 

DIDO solution, indicating the solution is applicable to 

the system of interest. Deviations between the two 

could reduce by increasing the DIDO node count. 

 

 
 

Fig. 10 Ascent state and feasibility simulation states 
 

Analysis will now turn to V&V of optimality. One point of 

V&V is an investigation of the Hamiltonian evolution from 

DIDO. The DIDO Hamiltonian is shown in Fig. 12. 

 The Hamiltonian supports a few conclusions from the 

previous section. Since the optimal control problem is 

minimum time and the Hamiltonian evolution is zero in time, 

the above supports the theory by being very close to a value of 

-1 for most of the trajectory. However, there are a few 

deviations from the theoretical value, but what is presented in 

the above figure should be close enough to verify this solution 

is indeed minimum time and therefore aligns with the theory. 

The HEE is also supported given that the Hamiltonian does not 

evolve through time enough to argue that it is not supported. 

 Investigation can also be made into the Hamiltonian 

minimization condition, where the stationary and 

complimentary conditions are added into Hamiltonian to 

minimize path constraints on controls. The complementarity 

conditions during the optimal control trajectory support the path 

constraints as defined in the conditionals previously illustrated 

while minimizing the Hamiltonian. Viewing the control 

trajectories in Fig. 11, when a particular control path constraint 

is met, as previously described by the complementarity 

condition, the respective 𝜇() value in Fig. 13 is non-zero, further 

supporting the solution aligns with the theory. 
 

 
 

Fig. 11 Ascent trajectory control vectors 
 

 
 

Fig. 12 Ascent Hamiltonian 
 

 The co-states can be investigated to help V&V the solution 

in comparison with the theory. The co-states are shown in Fig. 

14. The co-states in this problem are governed by the derived 

adjoint equations previously derived. As expected, the velocity 

co-states are changing in time as a function of the change to the 

vehicle’s velocity vector components. Furthermore, the 

position co-states, based on the theory, were expected to be 

constant during the trajectory, and this is supported in the 

adjoint equations, therefore further supporting the solution 

found was minimum time and supported by the theory. 
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Fig. 13 Ascent control co-vectors 
 

 

 
 

Fig. 14 Ascent co-states 
 

 

 

C.  Corridor Trajectory 

 The Corridor trajectory is formatted as the following 

optimal control problem, shown in Optimal Problem 2: 

Corridor. For the Corridor trajectory, Table IV helps 

characterize variables within the Corridor trajectory problem. 

 
 

Optimal Problem 2: Corridor 

Corridor 

 𝒙 ∈ ℝ6,    𝒖 ∈ ℝ5 

  

Min. 𝐽[𝒙(⋅), 𝒖(⋅), 𝑡𝑓] = 𝑡𝑓 

  
s.t. 𝒙̇ = 𝑓(𝒙, 𝒖, 𝒑) 

𝑡0 = 0 𝑠 
𝒗0
𝑢 = 𝒗𝑓,𝑎𝑠𝑐𝑒𝑛𝑡

𝑢  𝑚/𝑠 

𝒓0
𝑢 = 𝒓𝑓,𝑎𝑠𝑐𝑒𝑛𝑡

𝑢  𝑚 

(𝑣𝑓,𝑦
𝑢 , 𝑣𝑓,𝑧

𝑢 ) = (0, 0) 𝑚/𝑠 

𝑟𝑓,𝑥
𝑢 = 250 𝑚 

 

ℎ1(𝒖, 𝑡) ≔ 5 𝑁 ≤ 𝑇 ≤ 39.24 𝑁 

ℎ2(𝒖, 𝑡) ≔ 0 𝑑𝑒𝑔 ≤ 𝜑 ≤ 25 𝑑𝑒𝑔 

ℎ3(𝒖, 𝑡) ≔ 0 𝑑𝑒𝑔 ≤ 𝛽 ≤ 360 𝑑𝑒𝑔 

ℎ4(𝒖, 𝑡) ≔ 0  ≤ 𝛿𝐸 ≤ 0  
ℎ5(𝒖, 𝑡) ≔ 0  ≤ 𝛿𝑁 ≤ 0 

ℎ6(𝒙, 𝒖, 𝑡) ≔ 0 ≤ (𝑟𝑦
𝑢 − 𝑎𝑐)

2
+ (𝑟𝑧

𝑢 − 𝑏𝑐)
2 ≤ 𝑅𝑐

2 

 

 

 

 

TABLE IV 

PARAMETER DATA FOR THE OPTIMAL CORRIDOR CONTROL PROBLEM 

Parameter Value 

𝑎𝑐 10 𝑚 

𝑏𝑐 0 𝑚 

𝑅𝑐 2 𝑚 

𝑡0  0 𝑠 
𝐶𝑋 −0.1202 (stowed) 

  

 This optimal control problem has a fully defined initial state 

vector based on the final state of the Ascent trajectory, along 

with path constraints on all its control effectors. Furthermore, it 

has a path constraint inequality stating it must fly though a 

cylindrical region of radius 𝑅𝑐  at all altitudes during the 

Corridor trajectory. At the end of the trajectory, the vehicle is 

defined to have zero lateral velocity such that the handoff to the 

ballistic Coast trajectory does not lead to a large displacement 

prior to apogee. Furthermore, the optimal control problem is 

minimized in time similar to the Ascent trajectory. 

 The above defined optimal control problem can be solved 

through the HAMVET method. Since this optimal trajectory 

has some solutions that are the same as the Ascent trajectory, 

some of the following sections will be direct copies. 

 

Corridor Hamiltonian 

 The Lagrangian of the Hamiltonian is mostly equivalent to 

the previously derived Lagrangian of the Hamiltonian as 

described in. However, Eqn. 28 changes due to the additional 

cylindrical path constraint. 
 

𝝁𝑇𝒉(𝒙,𝒖) = 𝜇𝑇𝑇 + 𝜇𝜑𝜑 + 𝜇𝛽𝛽 + 𝜇𝛿𝐸𝛿𝐸 + 𝜇𝛿𝑁𝛿𝑁

+𝜇𝑐𝑦𝑙 [(𝑟𝑦
𝑢 − 𝑎𝑐)

2
+ (𝑟𝑧

𝑢 − 𝑏𝑐)
2]

 

 

Corridor Hamiltonian Minimization 

 Performing the HMC for the Corridor trajectory is 

equivalent to the Ascent trajectory and is therefore not repeated 

here. The KKT conditions for the control 𝜇 are also equivalent 

to Eqns. 29-33. The KKT condition for 𝜇𝑐𝑦𝑙 will come into play 

during the derivation of the adjoint equations. 
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Corridor Adjoint Equations 

 The Adjoint equations for the Corridor trajectory are not 

equivalent to those described in the Ascent trajectory due to the 

addition of a path constraint on position rather than a terminal 

position endpoint constraint. However, since the path constraint 

contains only position states, there is no effect to the 𝜆̇𝑣𝑥, 𝜆̇𝑣𝑦, 

and 𝜆̇𝑣𝑧  co-state differential equations. Taking the partial 

derivative of the positional states for the adjoint, we get 
 

𝜕𝐻̅

𝜕𝑟𝑥
= −𝜆̇𝑟𝑥 = 0 

 

𝜕𝐻̅

𝜕𝑟𝑦
= −𝜆̇𝑟𝑦 = 2𝜇𝑐𝑦𝑙(𝑟𝑦

𝑢 − 𝑎𝑐) 

 

𝜕𝐻̅

𝜕𝑟𝑧
= −𝜆̇𝑟𝑧 = 2𝜇𝑐𝑦𝑙(𝑟𝑧

𝑢 − 𝑏𝑐) 

 

The above states that the 𝜆𝑟𝑥  co-state should not change in time, 

but the others may. Note that the others still may not change if 

𝜇𝑐𝑦𝑙 is never non-zero from a path constraint. The KKT for 𝜇𝑐𝑦𝑙 

is the following. 
 

𝜇𝛾𝑔𝑠 {

≤ 0 𝑖𝑓 ℎ6(𝒙, 𝒖, 𝑡) = 0

= 0 𝑖𝑓 0 <  ℎ6(𝒙,𝒖, 𝑡) < 𝑅𝑐
2

≥ 0 𝑖𝑓 ℎ6(𝒙, 𝒖, 𝑡) = 𝑅𝑐
2   

(41) 

 

Should the path constraint always be met, it is likely 𝜆̇𝑟𝑦  and 𝜆̇𝑟𝑧 

may also not change in time due to being multiplied by zero. 
 

Corridor Transversality Conditions 

 The Endpoint Lagrangian is for the Corridor trajectory is 

defined differently than the previous Ascent trajectories due to 

the removal of the time minimization and the fully defined final 

position and velocity states. 
 

𝒆(𝒙0, 𝒙𝑓) =

[
 
 
 
 
 
𝒗0
 − 𝒗0

𝒓0
 − 𝒓0

𝑣𝑓,𝑦
 − 𝑣𝑦

0

𝑣𝑓,𝑧
 − 𝑣𝑧

𝑓

𝑟𝑓,𝑧
 − 𝑟𝑧

𝑓
]
 
 
 
 
 

⟹ 𝝂 ∈ ℝ9 

 

From the proposed optimal control problem, we know 𝐸(𝑡𝑓) =

𝑡𝑓, therefore our Endpoint Lagrangian becomes 
 

𝐸̅(𝒙0, 𝒙𝑓 , 𝝂, 𝑡𝑓) = 𝑡𝑓 + [𝜈1 𝜈2 𝜈3]𝒗0
 

 
+ [𝜈4 𝜈5 𝜈6]𝒓0

 

+ 𝜈7(𝑣𝑓,𝑦
 − 𝑣𝑦

0) + 𝜈8(𝑣𝑓,𝑧
 − 𝑣𝑧

𝑓
)  +  𝜈9(𝑟𝑓,𝑧

 − 𝑟𝑧
𝑓
)
 
 

 

The above Endpoint Lagrangian can be used to find the terminal 

transversality conditions by using Eqn. 36. 

 
𝜕𝐸̅

𝜕𝑣𝑓,𝑦 
= 𝝀𝑣𝑓,𝑦(𝑡𝑓) = 𝜈7 

 

𝜕𝐸̅

𝜕𝑣𝑓,𝑧 
= 𝝀𝑣𝑓,𝑧(𝑡𝑓) = 𝜈8 

 

𝜕𝐸̅

𝜕𝑟𝑓,𝑥 
= 𝝀𝑟𝑓,𝑥(𝑡𝑓) = 𝜈9 

With the complementarity condition, we know that all 𝝂 above 

are unrestricted in value, and therefore the transversality 

conditions provide no additional mathematical information. 

 

Corridor Hamiltonian Value Conditions 

The HVC for the Corridor trajectory is also minimum time, 

leading to an expected value of -1 as stated in Eqn. 39.  

 

Corridor Hamiltonian Evolution Equation 

 Like the Ascent trajectory, due to the Hamiltonian not being 

an explicit function of time, the HEE is equivalent to Eqn. 40. 

 

Corridor Trajectory Results 

 The Corridor trajectory from the Optimal Problem 2: 

Corridor trajectory problem formulation was implemented in 

DIDO and solved for under the previously described initial, 

endpoint, and path constraints, leading to Fig. 15, which 

contains the solved position and velocity states of the vehicle. 

The green cylindrical region represents the path constraint of 

the Corridor trajectory. Note that this figure also contains a 

post-simulation fidelity check as previously described in the 

Ascent trajectory’s results section. 

 

 
 

Fig. 15 Corridor state and feasibility simulation states 
 

Furthermore, a plot of the control vector shown in Fig. 16 can 

be made as well. 

There are a few elements of note about the above solution 

that prove the solution matches what was desired by the original 

formulation: 

• The initial states are as defined in the optimal control 

problem, which are equivalently the final states of the 
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Ascent trajectory. The vehicle starts at a non-zero 

upward velocity of ~26 m/s while perfectly aligned 

with the vertical component of the UEN frame (no 

lateral velocities) and at the specified position of 50 

meters above the ground. 

• To ensure minimum time, the thrust profile over the 

entire trajectory is full throttle. It ascends 200 𝑚 and 

reaches the desired endpoint conditions in 5.56 𝑠. 
• The vehicle moves vertically over the given altitude 

during its ascent all while staying within the 

predefined cylindrical corridor. The lateral velocity at 

the end of the trajectory is also zero. The final position 

at the specified final altitude is approximately 𝒓𝑓
𝑢 =

[250 8 0]𝑇 𝑚 , which is within/at the cylindrical 

region at the final time as defined as part of the optimal 

control problem’s path constraint. 

• The vertical velocity vector shows clear indication of 

aerodynamic drag becoming more significant in 

relation to the engine thrust. The final vertical velocity 

of the system was 40.72 𝑚/𝑠. 
• The control vector elements never exceed their control 

vector path constraints. 

• The feasibility simulation closely mimics the provided 

DIDO solution, indicating the solution is applicable to 

the system of interest. Deviations between the two 

would reduce by increasing the node count of the 

DIDO tool. 
 

 
 

Fig. 16 Corridor trajectory control vectors 
 

 Analysis will now turn to V&V of the optimality. One 

point of V&V is an investigation of the Hamiltonian evolution 

from DIDO. The DIDO Hamiltonian is shown in Fig. 17. The 

Hamiltonian supports a few conclusions from the previous 

section. Since the optimal control problem is minimum time, 

the theory stated the HVC should yield a Hamiltonian value of 

-1 at the final time. The Hamiltonian plot supports the theory 

by being very close to a value of -1. From the HEE, it can also 

be seen that the Hamiltonian does not evolve through time. 

 
 

Fig. 17 Corridor Hamiltonian 
 

 Investigation can also be made into the HMC, where the 

stationary and complimentary conditions are added into 

Hamiltonian to minimize path constraints on controls. Fig. 18 

illustrates those KKT co-vectors for the path constraints. 
 

 
 

Fig. 18 Corridor control co-vectors 
 

The complementarity conditions during the optimal control 

trajectory support the path constraints as defined in the 

conditionals previously illustrated while minimizing the 

Hamiltonian. Since the Corridor trajectory is simply a straight 

path and never exceeded its cylindrical path constraint, none of 

the path constraint limits were exercised with exception to the 

thrust control, and therefore are approximately zero, supporting 

the solution aligns with the theory. 
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 The co-states can also be investigated to help V&V the 

solution in comparison with the theory. The co-states are shown 

in Fig. 19. The co-states in this problem are governed by the 

derived adjoint equations. The vertical velocity co-state is non-

zero, which is expected given the trajectory is resolved to the 

vertical channel (lateral velocity is ≈ 0). Furthermore, the 𝑦 

and 𝑧 position co-states, based on the theory, were expected to 

be non-constant during the trajectory. However, since the path 

constraint was not exercised (𝜇𝑐𝑦𝑙 = 0), then it is understood 

why the lateral position co-states did not change in time. The 𝑥 

position (up in UEN) co-state was also expected to be constant 

in time. Based on the theory and the process of V&V, the 

solution found for the Corridor trajectory was minimum time. 
 

 
 

Fig. 19 Corridor co-states 
 

D.  Coast Trajectory 

 The Coast trajectory is simply a non-optimized trajectory 

that ends once the system reaches apogee. All controls are set 

in their off position, and the ballistics of the system are allowed 

to propagate. For the trajectory parameters of interest, Fig. 20 

illustrates the vehicle as it continues its dynamics from the 

Corridor trajectory exit. The vertical velocity deceleration is not 

constant due to the exponential decay of dynamic pressure as 

the vehicle slows. The system reaches apogee approximately 

3.31 𝑠 after the Corridor trajectory ends.   

 

E.  Reentry Trajectory 

 The Reentry trajectory is formatted as the optimal control 

problem shown in Optimal Problem 3: Reentry. Note that its 

initial conditions are taken from the final Coast trajectory state. 

For the Reentry trajectory, Table V defines parameters that help 

characterize the endpoint constraint on position.  

 The endpoint inequality constraint is only for lateral 

position at the specified final altitude of 100 𝑚  while also 

directly above the LLP. Furthermore, note that the path 

constraints on control are now different than the Ascent and 

Corridor trajectories; the engine control states are set to zero, 

and the grid fin control effectors are allowed to add forces on 

the system to guide the vehicle into the desired lateral region. 

Gravity is the only source of acceleration that moves the vehicle 

vertically from apogee to the final desired altitude. The optimal 

control problem is minimized via time similar to the Ascent and 

Corridor trajectories. 

 
Fig. 20 Coast trajectory states 

 

Optimal Problem 3: Reentry 

Reentry 

 𝒙 ∈ ℝ6,    𝒖 ∈ ℝ5 

  

Min. 𝐽[𝒙(⋅), 𝒖(⋅), 𝑡𝑓] = 𝑡𝑓 

  

s.t. 𝒙̇ = 𝑓(𝒙, 𝒖, 𝒑) 
𝑡0 = 0 𝑠 
𝒗0
𝑢 = 𝒗𝑓,𝑐𝑜𝑎𝑠𝑡

𝑢  𝑚/𝑠 

𝒓0
𝑢 = 𝒓𝑓,𝑐𝑜𝑎𝑠𝑡

𝑢  𝑚 

𝑟𝑓,𝑥
𝑢 = 100 𝑚 

 

0 ≤ (𝑟𝑓,𝑦
𝑢 − 𝑎𝑟)

2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑟)
2
≤ 𝑅𝑟

2 

 

ℎ1(𝒖, 𝑡) ≔ 0 𝑁 ≤ 𝑇 ≤ 0 𝑁 

ℎ2(𝒖, 𝑡) ≔ 0 𝑑𝑒𝑔 ≤ 𝜑 ≤ 0 𝑑𝑒𝑔 

ℎ3(𝒖, 𝑡) ≔ 0 𝑑𝑒𝑔 ≤ 𝛽 ≤ 0 𝑑𝑒𝑔 

ℎ4(𝒖, 𝑡) ≔ −1  ≤ 𝛿𝐸 ≤ 1  
ℎ5(𝒖, 𝑡) ≔ −1  ≤ 𝛿𝑁 ≤ 1  
 

 

 

 

TABLE V 

PARAMETER DATA FOR THE OPTIMAL REENTRY CONTROL PROBLEM 

Parameter Value 

𝑎𝑟 0 𝑚 

𝑏𝑟 0 𝑚 

𝑅𝑟 4 𝑚 

𝑡0  0 𝑠 
𝐶𝑋 −0.2104 (deployed) 
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 We can solve the above defined optimal control problem 

through the HAMVET method, as has been performed in the 

previous trajectories. Since this optimal trajectory is essentially 

the same as the Ascent trajectory, only explicit differences will 

be presented. 

 

Reentry Hamiltonian 

 The Lagrangian of the Hamiltonian is equivalent to the 

previously derived Lagrangian of the Hamiltonian as described 

in Eqns. 26, 27, and 28 for the Ascent trajectory. Therefore, it 

will not be repeated here. 

 

Reentry Hamiltonian Minimization 

 Performing the HMC for the Reentry trajectory is 

equivalent to the Ascent trajectory and is therefore not repeated 

here. However, the KKT conditions are now different given the 

updated path constraint inequality values. 
 

𝜇𝑇{𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑠𝑖𝑛𝑐𝑒 ℎ1
𝐿 = ℎ1

𝑈 (42) 
 

𝜇𝜑{𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑠𝑖𝑛𝑐𝑒 ℎ2
𝐿 = ℎ2

𝑈 (43) 
 

𝜇𝛽{{𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑠𝑖𝑛𝑐𝑒 ℎ3
𝐿 = ℎ3

𝑈 (44) 
 

𝜇𝛿𝐸 {

 
≤ 0 𝑖𝑓 𝛿𝐸 = −1

= 0 𝑖𝑓 − 1 < 𝛿𝐸 < 1
≥ 0 𝑖𝑓 𝛿𝐸 = 1

 (45) 

 

𝜇𝛿𝑁 {

≤ 0 𝑖𝑓 𝛿𝑁 = −1
= 0 𝑖𝑓 − 1 < 𝛿𝑁 < 1
≥ 0 𝑖𝑓 𝛿𝑁 = 1   

(46) 

 

Reentry Adjoint Equations 

 The Adjoint equations for the Reentry trajectory are 

equivalent to those described in the Ascent adjoint equations in 

Eqn. 34 and are therefore not repeated here. 

 

Reentry Transversality Conditions 

 The Endpoint Lagrangian is defined differently than the 

previous Ascent trajectory due to the removal of the lateral 

velocity endpoint constraint. 
 

𝒆(𝒙0, 𝒙𝑓) =

[
 
 
 
 

𝒗0
 − 𝒗0

𝒓0
 − 𝒓0

𝑟𝑓,𝑥
𝑢 − 𝑟𝑥

𝑓

(𝑟𝑓,𝑦
𝑢 − 𝑎𝑟)

2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑟)
2
]
 
 
 
 

⟹ 𝝂 ∈ ℝ8 

 

From the proposed optimal control problem, we know 𝐸(𝑡𝑓) =

𝑡𝑓, and therefore our Endpoint Lagrangian becomes 
 

𝐸̅(𝒙0, 𝒙𝑓 , 𝝂, 𝑡𝑓) = 𝑡𝑓 + [𝜈1 𝜈2 𝜈3]𝒗0
 
 
+ [𝜈4 𝜈5 𝜈6]𝒓0

 + 𝜈7(𝑟𝑓,𝑥
𝑢 − 𝑟𝑥

𝑓
)

+ 𝜈8 ((𝑟𝑓,𝑦
𝑢 − 𝑎𝑟)

2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑟)
2
) 

 

The above Endpoint Lagrangian can be used to find the terminal 

transversality conditions by using Eqn. 36. 
 

𝜕𝐸̅

𝜕𝑟𝑓,𝑥 
= 𝝀𝑟𝑓,𝑥(𝑡𝑓) = 𝜈7 

 

𝜕𝐸̅

𝜕𝑟𝑓,𝑦 
= 𝝀𝑟𝑓,𝑦(𝑡𝑓) = 2𝜈8(𝑟𝑓,𝑦 − 𝑎𝑐) 

 

𝜕𝐸̅

𝜕𝑟𝑓,𝑧
= 𝝀𝑟𝑓,𝑧(𝑡𝑓) = 2𝜈8(𝑟𝑓,𝑧 − 𝑏𝑐) 

 

With the complementarity condition, we know that all 𝝂 above 

are unrestricted in value. However, 𝜈8 can be approximated due 

to the inequality on the final endpoint lateral position. 
 

𝜈8

{
 
 

 
 ≤ 0 𝑖𝑓 (𝑟𝑓,𝑦

𝑢 − 𝑎𝑟)
2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑟)
2
= 0

= 0 𝑖𝑓 0 < (𝑟𝑓,𝑦
𝑢 − 𝑎𝑟)

2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑟)
2
< 𝑅𝑟

2

≥ 0 𝑖𝑓 (𝑟𝑓,𝑦
𝑢 − 𝑎𝑟)

2
+ (𝑟𝑓,𝑧

𝑢 − 𝑏𝑟)
2
= 𝑅𝑟

2   

(47) 

 

where 𝑎𝑟 , 𝑏𝑟, and 𝑅𝑟 are defined in Table V. 

 

Reentry Hamiltonian Value Conditions 

The HVC for the Reentry trajectory is also minimum time, 

similar to the Ascent and Corridor trajectories, leading to an 

expected value of -1 as stated in Eqn. 39.  

 

Reentry Hamiltonian Evolution Equation 

 Like the Ascent and Corridor trajectory, due to the 

Hamiltonian not being an explicit function of time, the HEE is 

equivalent to Eqn. 40. 

 

Reentry Trajectory Results 

 The Reentry trajectory from the Optimal Problem 3: 

Reentry trajectory problem formulation was implemented in 

DIDO and solved for under the previously described initial, 

endpoint, and path constraints, leading to Fig. 21, which 

contains the solved position and velocity states of the vehicle. 

Note that this figure also contains a post-simulation fidelity 

check as previously described in the Ascent trajectory’s results 

section. 

 Furthermore, a plot of the control vector, Fig. 22, can be 

made as well, which show the engine control effector states as 

zero, and the grid fin control effector states as non-zero. 

There are a few elements of note about this solution that 

prove the solution matches what was desired by the original 

formulation: 

• The initial states are as defined in the optimal control 

problem, which are equivalently the final states of the 

Coast trajectory. The vehicle starts at a zero upward 

and lateral velocity in the UEN frame. The Reentry 

trajectory starts at an altitude of approximately 

309.69 𝑚 (end of Coast). 

• The minimum time trajectory is mostly vertical. 

However, there is no force control effectors in the 

vertical direction other than deployed grid fin 

aerodynamic drag. The vehicle descends ~210 𝑚 and 

reaches the desired endpoint conditions in 8.81 𝑠 from 

the start of the Reentry trajectory. 

• The vehicle translates laterally over the given altitude 

during its descent and ultimately finishes the trajectory 

within the predefined circular Reentry exit. The final 

position at the specified final altitude is approximately 
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𝒓𝑢𝑐
𝑢 = [100 2.44 −0.22]𝑇 𝑚, which is within/near 

the circular bounding region above the pad, with a 

radius of 𝑅𝑟 at 𝒓 
𝑢 = [100 0 0]𝑇 𝑚, defined as part 

of the optimal control problem’s endpoint constraint. 

• The vertical velocity vector shows clear indication of 

aerodynamic drag becoming more significant as the 

velocity increases, leading to the system almost hitting 

its terminal velocity. Furthermore, the final vertical 

velocity of the system was −31.56 𝑚/𝑠, which is a 

smaller magnitude than it could be given the additional 

drag imposed on the system from the deployed grid 

fins. 

• The control vector elements never exceed their control 

vector path constraints. Furthermore, the grid fin 

control effectors are the only available source of 

control. At the start of the trajectory, the control effect 

is high, which is due to the low dynamic pressure in 

this region. 

• The feasibility simulation closely mimics the provided 

DIDO solution, indicating the solution is applicable to 

the system of interest. Deviations between the two 

would reduce by increasing the node count of the 

DIDO tool. 

 

 
 

Fig. 21 Reentry state and feasibility simulation states 

 

 Analysis will now turn to V&V of the solution for 

optimality. One point of V&V is an investigation of the 

Hamiltonian evolution from DIDO. The DIDO Hamiltonian is 

shown in Fig. 23. The Hamiltonian supports a few conclusions 

from the previous section. Since the optimal control problem is  

 
Fig. 22 Reentry trajectory control vectors 

 
 

 
 

Fig. 23 Reentry Hamiltonian 
 

minimum time and the Hamiltonian evolution is zero in time, 

Fig. 23 supports the theory by being very close to a value of -1. 

From the HEE, it can also be seen that the Hamiltonian does not 

evolve through time (even with the small deviations away from 

-1). This solution supports the theory.  

 Investigation can also be made into the HMC, where the 

stationary and complimentary conditions are added into 

Hamiltonian to minimize path constraints on controls. Fig. 24 

illustrates those KKT co-vectors for the path constraints. 

 The complementarity conditions during the optimal control 

trajectory support the path constraints as defined in the 

conditionals previously illustrated while minimizing the 

Hamiltonian. Since the Reentry trajectory completely 

constrains the engine control effectors, it makes sense that their 

control is latched at zero for all time. Furthermore, looking at 

the 𝛿𝐸 and 𝛿𝑁 controls during the Reentry trajectory, it clearly 

shows saturation of the control limits at the start of the 

trajectory, verifying why 𝜇𝛿𝐸 and 𝜇𝛿𝑁 are non-zero at the start 

of the trajectory. This is primarily due to the low dynamic 
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pressure in this region, referenced in Eqns. 12-14. This solution 

aligns with the theory. 
 

 
 

Fig. 24 Reentry control co-vectors 
 

 The co-states can also be investigated to help V&V the 

solution in comparison with the theory. The co-states are shown 

below in Fig. 25. 
 

 
 

Fig. 25 Reentry co-states 

 

 The co-states in this problem are governed by the derived 

adjoint equations. The vertical velocity co-state is non-zero, 

which is expected given the trajectory is resolved to the vertical 

channel (lateral velocity is ≈ 0). While difficult to see, the 

lateral velocity costate values are also non-zero, which is likely 

partially due to the saturated grid fin control vectors. 

Furthermore, the position co-states, based on the theory, were 

expected to be constant during the trajectory, and this is 

supported in the adjoint equations, therefore further supporting 

the solution for the Reentry trajectory found was minimum 

time. 

 

F.  Landing Trajectory 

 The Landing trajectory is formatted as the following 

optimal control problem shown in Optimal Problem 4: Landing. 

Note that its initial conditions are taken from the final Reentry 

trajectory state. 
 

Optimal Problem 4: Landing 

Landing 

 𝒙 ∈ ℝ6,    𝒖 ∈ ℝ5 

  

Min. 
𝐽[𝒙(⋅), 𝒖(⋅), 𝑡𝑓] = ∫ 𝑇

𝑡𝑓

𝑡0

 𝑑𝑡 

  
s.t. 𝒙̇ = 𝑓(𝒙, 𝒖, 𝒑) 

𝑡0 = 0 𝑠 
𝒗0
𝑢 = 𝒗𝑓,𝑟𝑒𝑒𝑛𝑡𝑟𝑦

𝑢  𝑚/𝑠 

𝒓0
𝑢 = 𝒓𝑓,𝑟𝑒𝑒𝑛𝑡𝑟𝑦

𝑢  𝑚 

𝒗𝑓
𝑢 = (−1, 0, 0) 𝑚/𝑠 

𝒓𝑓
𝑢 = (10, 0, 0) 𝑚 

 

ℎ1(𝒖, 𝑡) ≔ 0 𝑁 ≤ 𝑇 ≤ 39.24 𝑁 

ℎ2(𝒖, 𝑡) ≔ 0 𝑑𝑒𝑔 ≤ 𝜑 ≤ 25 𝑑𝑒𝑔 

ℎ3(𝒖, 𝑡) ≔ 0 𝑑𝑒𝑔 ≤ 𝛽 ≤ 360 𝑑𝑒𝑔 

ℎ4(𝒖, 𝑡) ≔ 0  ≤ 𝛿𝐸 ≤ 0  
ℎ5(𝒖, 𝑡) ≔ 0  ≤ 𝛿𝑁 ≤ 0 

ℎ6(𝒙, 𝒖, 𝑡) ≔  85 𝑑𝑒𝑔 ≤ 𝛾𝑔𝑠(𝒙,𝒑)  ≤ 90 𝑑𝑒𝑔 

 

 

 

 

The glide slope, 𝛾𝑔𝑠, is defined by the following equation. This 

equation constrains the vehicles positional slope as it descends 

to its desired final position. 
 

𝛾𝑔𝑠(𝒙,𝒑) = tan
−1

(

 
𝑟𝑥
𝑢 − 𝑎𝑙

√(𝑟𝑦
𝑢 − 𝑏𝑙)

2
+ (𝑟𝑧

𝑢 − 𝑐𝑙)
2
)

 (48) 

 

For the Landing trajectory, we have the following parameters 

shown in Table VI that help characterize variables in the 

optimal control problem.  

 
TABLE VI 

PARAMETER DATA FOR THE OPTIMAL LANDING CONTROL PROBLEM 

Parameter Value 

𝑎𝑙 𝑟𝑓,𝑥
𝑢  

𝑏𝑙 𝑟𝑓,𝑦
𝑢  

𝑐𝑙 𝑟𝑓,𝑧
𝑢  

𝑡0  0 𝑠 
𝐶𝑋 −0.2104 (deployed) 

 

 The Landing trajectory deviates the furthest 

mathematically from the other trajectories developed in this 

project thus far. For this trajectory, the engine control state path 
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constraints are re-enabled, and the engine is now allowed to 

command zero throttle. The grid fin controls are disabled back 

to zero, just as they were in the Ascent and Corridor trajectories. 

However, the grid fins remain deployed, meaning they benefit 

the system by acting as passive airbrakes which help slow down 

the vehicle to its fully defined position and velocity endpoint 

state. This optimal control problem also contains a glide slope 

path constraint, creating a canonical region of allowable flight 

profiles for the trajectory, with the vertex of the cone located at 

the final desired position. This optimal control problem is also 

no longer a minimum time problem, but rather a minimum 

integrated thrust. 

 We can solve the above defined optimal control problem 

through the HAMVET method, as has been performed in the 

previous trajectories. Since this optimal trajectory is essentially 

the same as the prior investigated trajectories, only differences 

will be presented. 

 

Landing Hamiltonian 

 The Lagrangian of the Hamiltonian is mostly equivalent to 

the previously derived Lagrangian of the Hamiltonian as 

described in. However, Eqns. 26 and 28 change due to the 

additional running cost and path constraint. 
 

𝐹(𝒙, 𝒖) = 𝑇 

 

𝝁𝑇𝒉(𝒙,𝒖) = 𝜇𝑇𝑇 + 𝜇𝜑𝜑 + 𝜇𝛽𝛽 + 𝜇𝛿𝐸𝛿𝐸 + 𝜇𝛿𝑁𝛿𝑁
+𝜇𝛾𝑔𝑠𝛾𝑔𝑠(𝒙, 𝒑)

 

 

The KKT condition for 𝜇𝛾𝑔𝑠  will come into play during the 

derivation of the adjoint equations. 

 

Landing Hamiltonian Minimization 

 Performing the HMC for the Landing trajectory is 

equivalent to the Ascent, Corridor, and Reentry trajectories’ 

HMC, except for 
𝜕𝐻̅

𝜕𝑇
 due to the additional running thrust cost 

state. The HMC will not, in its entirety, be repeated here, but 
𝜕𝐻̅

𝜕𝑇
 

is rewritten below as it now applies to the Landing trajectory. 
 

𝜕𝐻̅

𝜕𝑇
= 0 = 1 + 𝜆𝑣𝑥 (

cos𝜑

𝑚
) + 𝜆𝑣𝑦 (

sin𝜑 sin 𝛽

𝑚
) + 𝜆𝑣𝑧 (

sin𝜑 cos𝛽

𝑚
) + 𝜇𝑇 

 

The KKT conditions for the control path constraints are also 

equivalent to Eqns. 30-33, with exception to 𝜇𝑇 which is now  
 

𝜇𝑇 {

≤ 0 𝑖𝑓 𝑇 = 0 𝑁
= 0 𝑖𝑓 0 𝑁 < 𝑇 < 39.24 𝑁
≥ 0 𝑖𝑓 𝑇 = 39.24 𝑁   

 

 

due to the change to the inequality on the allowable minimum 

thrust. 

 

Landing Adjoint Equations 

 The Adjoint equations for the Landing trajectory are no 

longer equivalent to those described in the Ascent, and Reentry 

trajectories due to the addition of the path constraint. However, 

since the path constraint contains only position states, there is 

no effect to the 𝜆̇𝑣𝑥 , 𝜆̇𝑣𝑦, and 𝜆̇𝑣𝑧 co-state differential equations. 

Taking the partial derivative of the remaining 𝒙 position states 

for the adjoint, we get 
 

𝜕𝐻̅

𝜕𝑟𝑥
= −𝜆̇𝑟𝑥 =

𝜇𝛾𝑔𝑠 sec
−1

(

 𝑟𝑥
𝑢 − 𝑎𝑙

√(𝑟𝑦
𝑢 − 𝑏𝑙)

2
+ (𝑟𝑧

𝑢 − 𝑐𝑙)
2
)

 

2

√(𝑟𝑦
𝑢 − 𝑏𝑙)

2
+ (𝑟𝑧

𝑢 − 𝑐𝑙)
2

 

 

𝜕𝐻̅

𝜕𝑟𝑦
= −𝜆̇𝑟𝑦

=

−𝜇𝛾𝑔𝑠 sec
−1

(

 𝑟𝑥
𝑢 − 𝑎𝑙

√(𝑟𝑦
𝑢 − 𝑏𝑙)

2
+ (𝑟𝑧

𝑢 − 𝑐𝑙)
2
)

 

2

(𝑟𝑥
𝑢 − 𝑎𝑙)(𝑟𝑦

𝑢 − 𝑏𝑙)

((𝑟𝑦
𝑢 − 𝑏𝑙)

2
+ (𝑟𝑧

𝑢 − 𝑐𝑙)
2)

5
2

 

 

𝜕𝐻̅

𝜕𝑟𝑧
= −𝜆̇𝑟𝑧 =

−𝜇𝛾𝑔𝑠 sec
−1

(

 𝑟𝑥
𝑢 − 𝑎𝑙

√(𝑟𝑦
𝑢 − 𝑏𝑙)

2
+ (𝑟𝑧

𝑢 − 𝑐𝑙)
2
)

 

2

(𝑟𝑥
𝑢 − 𝑎𝑙)(𝑟𝑧

𝑢 − 𝑐𝑙)

((𝑟𝑦
𝑢 − 𝑏𝑙)

2
+ (𝑟𝑧

𝑢 − 𝑐𝑙)
2)

5
2

 

 

Note that in the previous trajectory problems adjoint equations 

above were constant in time. Now, due to the additional glide 

slope path constraint, the position co-vector states change as a 

function of time as the vehicle positionally translates, but only 

if 𝜇𝛾𝑔𝑠  is non-zero. From the KKT condition, we also can infer 

the following in Eqn. 49. 
 

𝜇𝛾𝑔𝑠 {

≤ 0 𝑖𝑓 𝛾𝑔𝑠(𝒙,𝒑) = 85 𝑑𝑒𝑔

= 0 𝑖𝑓 85 𝑑𝑒𝑔 <  𝛾𝑔𝑠(𝒙, 𝒑) < 90 𝑑𝑒𝑔

≥ 0 𝑖𝑓 𝛾𝑔𝑠(𝒙,𝒑) = 90 𝑑𝑒𝑔   

(49) 

 

Since the glide slope cannot mathematically be greater than 

90 𝑑𝑒𝑔, then we should expect to see 𝜇𝛾𝑔𝑠  as ≤ 0. 

 

Landing Transversality Conditions 

 The Endpoint Lagrangian is for the Landing trajectory is 

defined differently than the previous trajectories due to the 

removal of the time minimization and the fully defined final 

position and velocity states. 
 

𝒆(𝒙0, 𝒙𝑓) =

[
 
 
 
 
𝒗0
 − 𝒗0

𝒓0
 − 𝒓0

𝒗𝑓
 − 𝒗𝑓

𝒓𝑓
 − 𝒓𝑓 ]

 
 
 
 

⟹ 𝝂 ∈ ℝ12 

 

From the proposed optimal control problem, we know 𝐸(𝑡𝑓) =

0, therefore our Endpoint Lagrangian becomes 
 

𝐸̅(𝒙0, 𝒙𝑓 , 𝝂, 𝑡𝑓) = [𝜈1 𝜈2 𝜈3]𝒗0
 
 
+ [𝜈4 𝜈5 𝜈6]𝒓0

 + [𝜈7 𝜈8 𝜈9]𝒗𝑓
 

 

+ [𝜈10 𝜈11 𝜈12]𝒓𝑓
  

 

The above Endpoint Lagrangian can be used to find the terminal 

transversality conditions by using Eqn. 36. 

 



 AE/ME4881 – Trajectory Planning & Guidance  Jeffrey A. Mays 

 

21 

 

𝜕𝐸̅

𝜕𝑣𝑓,𝑥 
= 𝝀𝑣𝑓,𝑥(𝑡𝑓) = 𝜈7 

 

𝜕𝐸̅

𝜕𝑣𝑓,𝑦 
= 𝝀𝑣𝑓,𝑦(𝑡𝑓) = 𝜈8 

 

𝜕𝐸̅

𝜕𝑣𝑓,𝑧
= 𝝀𝑣𝑓,𝑧(𝑡𝑓) = 𝜈9 

 

𝜕𝐸̅

𝜕𝑟𝑓,𝑥 
= 𝝀𝑟𝑓,𝑥(𝑡𝑓) = 𝜈10 

 

𝜕𝐸̅

𝜕𝑟𝑓,𝑦 
= 𝝀𝑟𝑓,𝑦(𝑡𝑓) = 𝜈11 

 

𝜕𝐸̅

𝜕𝑟𝑓,𝑧
= 𝝀𝑟𝑓,𝑧(𝑡𝑓) = 𝜈12 

 

With the complementarity condition, we know that all 𝝂 above 

are unrestricted in value, and therefore the transversality 

conditions provide no additional mathematical information.  

 

Landing Hamiltonian Value Conditions 

The HVC for the Landing trajectory is found by performing 

Eqn. 38 on the Landing Endpoint Lagrangian. However, due to 

it not being a function of the final time, the expected final 

Hamiltonian value is  
 

ℋ[@𝑡𝑓] = −
𝜕𝐸̅

𝜕𝑡𝑓
= 0 

 

Landing Hamiltonian Evolution Equation 

 Like the Ascent, Corridor, and Reentry trajectories, due to 

the Hamiltonian not being an explicit function of time, the HEE 

is equivalent to Eqn. 40. 

 

Landing Trajectory Results 

 The Landing trajectory from the Optimal Problem 4: 

Landing trajectory problem formulation was implemented in 

DIDO and solved for under the previously described initial, 

endpoint, and path constraints, leading to Fig. 26, which 

contains the solved position and velocity states of the vehicle. 

Note that this figure also contains a post-simulation fidelity 

check as previously described in the Ascent trajectory’s results 

section. A plot of the glide slope can also be shown, illustrated 

in Fig. 27, to prove the path constraint more easily was met.  

 Furthermore, Fig. 28 of the control vector can be made as 

well, which shows the engine control effector state as non-zero, 

and the grid fin control effector states as zero, per the path 

constraints. 

There are a few elements of note about the above solution 

that prove the solution matches what was desired by the original 

formulation: 

• The initial states are as defined in the optimal control 

problem, which are equivalently the final states of the 

Reentry trajectory. The vehicle starts at an initial 

velocity of 𝒗𝑢𝑐
𝑢 = [−31.56 −3.99 0.17]𝑇 𝑚/𝑠  in 

the UEN frame. The initial position in the UEN frame 

is 𝒓𝑢𝑐
𝑢 = [100.0 2.44 −0.22]𝑇 𝑚. 

• As the vehicle descends, it implements some force 

from its engine to keep the vehicle within the defined 

cone, such that it does not exceed its glide slope path 

constraint. The final glide slope angle going to zero in 

Fig. 27 is due to the vehicle being at the final desired 

position, therefore making the angle hard to define. 

Otherwise, the glide slope path constraint was met. 

• The vehicle descends ~90 𝑚 and reaches the desired 

endpoint conditions in 4.30 𝑠 . The final position is 

𝒓𝑢𝑐
𝑢 = [10.19 0.0 0.0]𝑇 𝑚 and the final velocity is 

𝒓𝑢𝑐
𝑢 = [−0.95 0.37 −0.21]𝑇 𝑚, which is close to 

what was desired for the start of the T=W trajectory. 

• To minimize thrust usage, the vehicle waits until ~2 

seconds have passed in the Landing trajectory before 

setting a full throttle condition, sometimes known in 

industry as a “decel” burn. 

• The control vector elements never exceed their control 

vector path constraints. 

• The feasibility simulation somewhat closely mimics 

the provided DIDO solution, indicating the solution is 

applicable to the system of interest. Deviations 

between the two would reduce by increasing the node 

count of the DIDO tool. 

 

 
 

Fig. 26 Landing state and feasibility simulation states 

 

 Analysis will now turn to V&V of the optimality. One point 

of V&V is an investigation of the Hamiltonian evolution from 

DIDO. The DIDO Hamiltonian is shown below in Fig. 29. 

 The Hamiltonian supports a few conclusions from the 

previous section. Since the optimal control problem is no longer 
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minimum time, the above supports the theory by being close to 

a final value of 0. From the HEE, it can also be seen that the 

Hamiltonian does not evolve through time (relatively). This 

solution supports the theory. The above was solved with 70 

nodes within DIDO in order to provide a closer solution to 

𝐻[@𝑡𝑓] = 0 , whereas many of the other trajectories were 

solved with 50 nodes. The feasibility solution, as it applies to 

the theory, would theoretically be improved if this node count 

increased even more, but the above solution is acceptable for 

this application. 

 Investigation can also be made into the HMC, where the 

stationary and complimentary conditions are added into 

Hamiltonian to minimize path constraints on controls. Fig. 30 

illustrates the KKT co-vectors for the path constraints.  

 The complementarity conditions during the optimal control 

trajectory support the path constraints as defined in the 

conditionals previously illustrated while minimizing the 

Hamiltonian. The thrust is shown to be non-zero most of the 

time, and this is due to the “bang-bang” control logic 

implemented from the cost functional. Furthermore, looking at 

the 𝜑 and 𝛽 controls during the Landing trajectory, it clearly 

shows saturation of the control limits at specific points line up 

with the KKT co-vector state deviations from 0. Since the 

Landing trajectory completely constrains the grid fin control 

effectors, it makes sense that their control co-vector is latched 

at zero for all time. Lastly, the 𝜇𝛾𝑔𝑠  path constraint co-vector is 

only non-zero when the glide slope touches the 85 𝑑𝑒𝑔 limit as 

seen from Fig. 27, which matches our expected conditional 

statement in Eqn. 49. Furthermore, since the glide slope cannot 

mathematically be greater than 90 𝑑𝑒𝑔, then based on the KKT 

in Eqn. 49, we see supporting evidence that 𝜇𝛾𝑔𝑠  is only ever ≤

0 during the trajectory. 

 The co-states can also be investigated to help V&V the 

solution in comparison with the theory. The co-states are shown 

in Fig. 31. The co-states in this problem are governed by the 

derived adjoint equations. The vertical and east velocity co-

states are non-zero, which is expected given the bulk of the 

trajectory is resolved to the Up-East plane. The position co-

states are seemingly linear and can be supported as so given the 

𝜇𝛾𝑔𝑠  value is zero for most of the trajectory. Looking back at the 

adjoint equations for Landing velocity, a zero value for 𝜇𝛾𝑔𝑠  

would produce a constant position costate. Once the path 

constraint is limited and 𝜇𝛾𝑔𝑠  becomes non-zero, shown in Fig. 

30, then the velocity co-states are no longer constant and are 

allowed to change over time.  

 

 

 
 

Fig. 27 Landing trajectory glide slope 

 

 

 
 

Fig. 28 Landing trajectory control vectors 

 
 

 
 

Fig. 29 Landing Hamiltonian 
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Fig. 30 Landing control co-vectors 

 

 
 

Fig. 31 Landing co-states 

 

G.  T=W Trajectory 

 The T=W trajectory is simply a flight phase that continues 

its dynamics from the Landing trajectory handoff to touchdown. 

The T=W begins at a descent rate of −1 𝑚/𝑠  and at 10 𝑚 

directly above the ground as previously described in the desired 

final state of the Landing trajectory problem statement. In the 

true system, there would be a closed loop engine controller 

meant to retain the “slow” vertical descent velocity of the 

vehicle such that the touchdown event does not exceed any 

landing gear structural requirements. There would also be 

attitude and lateral position control to help constrain the system 

given unforeseen lateral velocities and/or wind near the pad. 

Therefore, since this trajectory phase does not require any 

optimization, it is simply stated here for the future inner-loop 

control designer’s knowledge. This trajectory then completes 

the complete mission statement for this vehicle. 

V.  CONCLUSION 

 This section concludes the entirety of the above set of 

optimal trajectories. It is broken up into three parts: An 

overview of the entire solution, the conclusion of the project, 

and areas and improvements for next steps. 

A.  Compiled Solution 

 The previous sections contained the problem formulations 

and solutions for the various non-optimized/optimized 

trajectories as they apply to the theoretical vehicle of note in 

this assignment. Fig. 32 illustrates all trajectories combined into 

the vehicle’s full mission flight profile. This plot represents an 

end-to-end liftoff to landing trajectory that the true system 

could be tasked to follow. First, the vehicle ascends from the 

pad using its engine. The grid fins are stowed and disabled in 

this flight region. Then, after one second passes, the vehicle 

vectors eastward to the Corridor trajectory entrance circular 

waypoint as fast as the dynamics will allow. Then, the vehicle 

flies though the cylindrical corridor path as defined in the 

Corridor trajectory under minimum time and at full throttle. At 

the end of the Corridor trajectory, the engine is shut off, and the 

vehicle is allowed to ballistically reach apogee, denoted as the 

Coast trajectory. Once the vehicle hits apogee, the Reentry 

trajectory starts, signaling the grid fins to deploy and control the 

descent path back towards the pad. During the Reentry 

trajectory, the engine is disabled. At 100 𝑚  altitude, the 

Landing trajectory starts, and the engine is reenabled and the 

grid fin control is disabled. The engine then tries to both guide 

the vehicle to its desired final location above the pad, but also 

maintain a prespecified glide slope. The set of trajectories then 

end at the entrance to the T=W trajectory, which would softly 

return the vehicle back onto the pad from which it started. 

Assuming the T=W time takes ~10 seconds, the total mission 

takes only ~35 seconds to complete, with the corridor being 

successfully flown through at just before 9  seconds total 

mission elapsed time. This completes the mission profile of this 

vehicle, assuming the user wanted to measure the atmospheric 

corridor specified (shown in green in Fig. 32). This trajectory 

could be easily expanded to fly a myriad of other 

configurations, spanning different altitudes and waypoints. 

 

B.  Conclusion 

 This project’s task was to develop an optimal trajectory for 

a theoretical drone that would allow it to fly though an 

atmospheric region and then land itself back on the pad from 

which it came. A complete set of trajectories were successfully 

developed to do so, utilizing the dynamics and control effectors 

of the proposed system. These trajectories were all formulated 

and solved using Pontryagin’s minimization principle to align 

the theory and provide a feasibility/V&V check for the solution 
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provided from DIDO. All trajectories developed aligned with 

the theory, and therefore, the solution in this paper can be 

deemed optimal given the proposed constraints. 

 In relation to radiosondes, this drone flew through this 

atmospheric corridor perfectly, and in as minimum time as 

possible give the cost functionals and vehicle dynamics as 

previously described. Assuming an average radiosonde flight 

ascent velocity, it would have taken an entire minute for a 

radiosonde to have reached an altitude of 250 𝑚, whereas this 

drone could do it in just 9 seconds. This is a sixth of the time, 

and an exact measure of the desired atmospheric path, and large 

improvement from the radiosonde system. 

 Furthermore, as an aside, the tooling was setup in such a 

way that the trajectories could be easily reconfigured. Should 

the trajectory designer desire a different trajectory than what 

was developed in this paper, the simple change of a few 

constraints could allow the trajectory designer to fly the vehicle 

through different atmospheric corridors and at different 

altitudes. Furthermore, all trajectories in software were written 

to depend on the prior trajectory’s final state, meaning that each 

trajectory will always initialize from where the vehicle was 

prior. 
 

 
 

Fig. 32 Full mission 

 

C.  Areas of Improvement 

 Lastly, there are a few areas of improvement. These 

improvement areas could be seen as future development tasks, 

or understandable model improvements. Either way, they need 

to be discussed prior to the completion of this paper. 

- Coriolis and centripetal acceleration were not included 

in the governing dynamics. While a justifiable 

simplification for the trajectory designed in this paper, 

the effects from these sources would be non-negligible 

if higher altitudes/velocities were desired. 

- The grid fins are current disabled in the Landing 

trajectory. However, most of that trajectory’s dynamic 

pressure is still strong enough to drive a large amount 

of effectiveness out of the grid fins. Therefore, moving 

forward, it would make sense to include the grid fin 

control effectors along with the engine in the landing 

algorithm. 

- The dynamic pressure in the optimal control solver 

causes some odd transient behavior in the reentry 

trajectory. Likely, at this point in the flight, the 

engineers would be more worried about getting the 

vehicle back over the pad rather than if the trajectory 

was completely optimal (feasible) in completing 

Reentry in minimum time. Therefore, it’s possible the 

optimal dynamic model for the grid fins, or the design 

of the Reentry trajectory, may need some additional 

work. 

- The Landing trajectory should contain only a single 

transient for the engine from zero to full throttle. Some 

updates to the desired endpoint bounds and control 

effectors could allow this to happen (such as keeping 

grid fin control enabled in Landing). Too many on/off 

thrust events of the engine during Landing could cause 

undesired effects in the real system. 

More improvement ideas may come to mind later, but the above 

should be sufficient for completion of this project. 
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